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Abstract Two-person noncooperative games with finitely many pure strategies
are considered, in which the players have linear orderings over sure outcomes
but incomplete preferences over probability distributions resulting from mixed
strategies. These probability distributions are evaluated according to t-degree
stochastic dominance. A t-best reply is a strategy that induces a t-degree stochas-
tically undominated distribution, and a t-equilibrium is a pair of t-best replies.
The paper provides a characterization and an existence proof of t-equilibria
in terms of representing utility functions, and shows that for large t behavior
converges to a form of max–min play. Specifically, increased aversion to bad
outcomes makes each player put all weight on a strategy that maximizes the
worst outcome for the opponent, within the supports of the strategies in the
limiting sequence of t-equilibria.

Keywords Stochastic dominance · Two-person noncooperative games

1 Introduction

In this paper we consider noncooperative games between players with incom-
plete preferences over lotteries. More precisely, we assume that they have
complete preferences over sure alternatives, and incomplete preferences over
lotteries resulting from playing mixed strategies.
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An important motivation for considering incomplete preferences over lot-
teries is the intuition that completeness is a very strong assumption in many
situations: it may be already quite demanding for players to be able to order all
sure alternatives. It is not the objective of this paper to delve deep into a discus-
sion about (in)completeness of preferences. A recent paper that both presents
a brief history of this discussion and investigates the formal consequences of
dropping the completeness assumption from the von Neumann-Morgenstern
conditions, is Dubra et al. (2004). In fact, their main result applies to the pref-
erences we consider in this paper.

To become more specific, we consider two-person games with finite (pure)
strategy sets. The players have complete transitive antisymmetric preferences
(linear orderings) over the pure outcomes of the game, and evaluate probabil-
ity distributions over the outcomes induced by mixed strategies by a stochastic
dominance criterion. This, of course, is a very specific way to deal with incom-
plete preferences, but there is an appropriate justification in terms of aversion
to risk or, perhaps better, to bad outcomes, as we will see. With the exception
of completeness of preferences, we do not deviate from the standard assump-
tions of noncooperative game theory, such as common knowledge between the
players of the data of the game, including the (incomplete) preferences.

According to first-degree stochastic dominance, probability distributions that
shift more probability to better outcomes are considered more attractive. Since,
indeed, the stochastic dominance ordering is not complete, we call a mixed
strategy of a player a best reply against the strategy of the opponent if the
resulting probability distribution over the outcomes is not dominated by any
other probability distribution that the player in question is able to realize, given
the strategy of the opponent. An equilibrium is a pair of best replies. Fishburn
(1978) established that the set of equilibria is equal to the union of all sets
of Nash equilibria, taken over all possible utility representations of the pref-
erences. This is an intuitive result in view of the familiar characterization of
first-degree stochastic dominance which says that a distribution is undominated
if and only if it maximizes expected utility for at least one utility representation
of the preferences over certain outcomes.

We take this analysis a good deal further by assuming that the players’ prefer-
ences over lotteries are more restricted or, equivalently, that the derived classes
of utility functions which may represent their preferences are narrowed down.
Specifically, we study so-called t-equilibria, where the natural number t is the
degree of stochastic dominance used to evaluate probability distributions. As
is well-known, a distribution is second-degree stochastically undominated if
and only if it maximizes expected utility for at least one concave utility repre-
sentation of the preferences over certain outcomes. Loosely speaking, higher
degrees of stochastic dominance correspond to higher degrees of risk aversion
or, more specifically, higher degrees of aversion to bad outcomes. As the degree
of stochastic dominance becomes higher, preferences become more complete
and, in the limit, would order lotteries by comparing worst outcomes.

After preliminaries about stochastic dominance, games and equilibria in
Sects. 2 and 3, we consider an example in Sect. 4 which nicely illustrates these
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concepts and the main results of the paper. These results are, first, a character-
ization of t-best replies in terms of utility functions and existence of t-equilibria
in Sect. 5, and, second, limit behavior as the degree of stochastic dominance t
goes to infinity, in Sect. 6.

Existence of t-equilibria can be established directly by using a fixed point
argument,1 or indirectly by using representation by utility functions and exis-
tence of Nash equilibrium (Sect. 5).

It follows from the results of Sect. 5 that the sets of characterizing utility func-
tions become smaller as t grows, as already indicated by the transition from t = 1
to t = 2. Consequently, the best reply correspondences and sets of t-equilibria
decrease as well. In Sect. 6 we provide a complete characterization of the sets of
pure strategies that can serve as supports for t-equilibria as t becomes large. In
the limit, such equilibria converge to max–min play, in the sense that each player
plays a pure strategy that, among the strategies in the supports, maximizes the
worst outcome for the opponent. Observe that this is very different from what is
usually meant by max–min play, namely that players maximize their own worst
outcomes. Max–min play in the present setting is closer to equilibrium play:
for large t, a player puts probability close to 1 on the pure strategy maximizing
the worst outcome for the opponent among the strategies in the support of the
opponent’s mixed strategy, in order to keep all these strategies undominated.
The intuition for this is that, as t becomes large, the opponent attaches increas-
ing weights to worse outcomes, and to compensate for this a player should put
low weights on those own strategies that possibly result in these worse out-
comes for the opponent. In fact, this can be interpreted as altruism emerging in
equilibrium as a consequence of high aversion to bad outcomes.

Section 7 concludes the paper with a brief discussion of possible extensions
and of related literature. Appendix A collects the proofs of Sect. 2.

2 Stochastic dominance

Let � ≥ 1 be an integer and let O = {1, . . . , �} be a set of � alternatives. For
1 ≤ k < l ≤ � we assume that a decision maker strictly prefers alternative l to
alternative k.

For a probability distribution r = (r1, . . . , r�) on O (so alternative l occurs
with probability rl) we define, recursively, for each l ∈ {1, . . . , �}, F0

r (l) = rl and

Ft
r(l) =

l∑

i=1

Ft−1
r (i) (t ≥ 1).

So F1
r is the cumulative distribution function of F0

r = r and, similarly, Ft
r ‘accu-

mulates’ the weights assigned by Ft−1
r . For probability distributions r and s on

O, r t-th degree stochastically dominates s if

1 This was done in an earlier version of the paper; the proof is available upon request.
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Ft
r(l) ≤ Ft

s(l) for every l ∈ {1, . . . , �} .

Observe that at least one of these inequalities is strict if r �= s. Hence, t-degree
stochastic dominance is an asymmetric binary relation. It is easy to see that it is
also reflexive and transitive but not complete. Clearly, it respects the presumed
linear ordering on O.

For t = 1, this relation means that r puts more probability on better alter-
natives than s. It is well known that this is equivalent to the expected utility
under r being at least as large as the expected utility under s for every utility
representation of σ . For second degree stochastic dominance, an analogous
equivalence holds if we restrict to concave utility functions, or, more generally,
utility functions with non-increasing differences between adjacent alternatives.
Note that tth degree stochastic dominance implies (t + 1)th degree stochastic
dominance. In a relative sense, a similar relation holds between (t + 1)th and
tth degree stochastic dominance as between second and first degree stochastic
dominance. Thus, higher degree stochastic dominance can be associated with
increased risk aversion of decision makers, who put increasing weight on bad
outcomes when evaluating probability distributions.

Fishburn (1976, 1980) characterizes stochastic dominance in terms of utility
functions and in terms of moments of distributions. Below, we provide a char-
acterization of stochastic dominance in terms of utility functions for the context
of this paper.

Denote Ft
r = (Ft

r(1), . . . , Ft
r(�)) and let A = [aij] be the � × �-matrix with

aij =
{

1 if i ≤ j
0 if i > j

for all i, j ∈ {1, . . . , �}.

Write At = A · A · · · A (t times, t ∈ IN). The following lemma gives a convenient
representation of Ft

r.

Lemma 2.1 Ft
r = rAt for every t ∈ IN.

Denoting the element in row i and column j of At by at
ij, we derive the

following expression for this number.

Lemma 2.2 Let t ∈ IN. Then

at
ij =

{
(j−i+t−1)!
(j−i)!(t−1)! if i ≤ j
0 if i > j

.

The following lemma applies to t approaching infinity.

Lemma 2.3 Let i, i′, j ∈ {1, . . . , �} with i < i′ ≤ j. Then at
ij ≥ at

i′j for every t ∈ IN

and lim
t→∞ at

ij/at
i′j = ∞.
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For every t ∈ IN, let2

Ut := {
u ∈ IR� | u = −Atc for some c ∈ IR�, c > 0

}

and

Ūt := {
u ∈ IR� | u = −Atc for some c ∈ IR�, c ≥ 0

}
.

An element u of Ut can be interpreted as a utility function representing the
linear ordering on O by the assignment i 	→ ui, since u1 < u2 < · · · < u�. The set
Ut is particularly relevant in Sect. 5 when we characterize and prove the exis-
tence of t-equilibria.

Note that U1 contains essentially any utility representation of σ . This is
consistent with remarks made earlier. The set Ut is decreasing in t.

The set Ūt is a convex and closed set (the topological closure of Ut). Using
Lemma 2.1, it is straightforward to derive the following proposition.

Proposition 2.4 For all probability distributions r and s on O, r t-degree stochas-
tically dominates s if and only if

∑�
l=1 rlul ≥ ∑�

l=1 slul for all u ∈ Ūt.

This result adapts Fishburn (1976) to our context, and is a special case of
the main theorem in Dubra et al. (2004). Note that Proposition 2.4 would
remain true if we replace Ūt by Ut. Proofs of Lemmas 2.1–2.3 can be found in
Appendix A.

3 Two-person games and t-equilibria

Consider two players. Player 1 has pure strategy set M = {1, . . . , m}. A (mixed)
strategy for player 1 is a probability distribution over M. Denote the set of
strategies for player 1 by �M. A pure strategy i is identified with the mixed
strategy ei ∈ �M, where ei

k = 1 if k = i and ei
k = 0 otherwise. Similarly, player

2 has pure strategy set N = {1, . . . , n} and (mixed) strategy set �N . A pure
strategy j is identified with the mixed strategy ej ∈ �N . If player 1 plays pure
strategy i and player 2 pure strategy j, then the alternative oij results. If player 1
plays p ∈ �M and player 2 plays q ∈ �N , then oij results with probability piqj.
Let O := {oij | i ∈ M, j ∈ N} and assume that players 1 and 2 have preference
relations represented, respectively, by bijections σ , τ : M × N → {1, . . . , mn}.
Thus, player 1 strictly prefers oij to oi′j′ when σ(i, j) > σ(i′, j′) (and similarly for
player 2 and τ ).

For p ∈ �M and q ∈ �N we denote by pqσ the vector of probabilities with
lth coordinate pqσl = piqj such that σ(i, j) = l, for all l ∈ {1, . . . , mn}. We
assume that the players evaluate strategies according to a stochastic dominance
criterion. More precisely, let t ∈ IN and fix a strategy q ∈ �N for player 2. Then

2 For vectors x and y, x > y [x ≥ y] means xi > yi [xi ≥ yi] for every coordinate i. Similarly for
x < y, x ≤ y.
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a strategy p ∈ �M of player 1 results in the weight vector Ft
pqσ , which depends

on σ and assigns weight Ft
pqσ (σ (i, j)) to alternative oij.

We call p a t-best reply against q if there is no p′ ∈ �M such that p′q �= pq
and p′q tth degree stochastically dominates pq. The definition of a t-best reply
q against p is analogous. A pair (p, q) ∈ �M × �N is a t-equilibrium if p is a
t-best reply against q and vice versa. By Et we denote the set of t-equilibria.3

4 An example

The example presented here is illustrative of the main results of this paper,
namely (1) existence and characterization of t-equilibria; and (2) asymptotic
behavior for t approaching infinity.

Let m = n = 2 and consider the game

[
o11 o12
o21 o22

]

where the rows are the pure strategies of player 1, the columns those of player
2, and the preferences are given by σ(1, 2) = 1, σ(2, 2) = 2, σ(2, 1) = 3, and
σ(1, 1) = 4 for player 1 and τ(1, 2) = 1, τ(1, 1) = 2, τ(2, 1) = 3, and τ(2, 2) = 4
for player 2.

We concentrate on player 1. The matrix At (t ≥ 1) can be computed using
Lemma 2.2. This results in

At =

⎡

⎢⎢⎣

1 t 1
2 t(t + 1) 1

6 t(t + 1)(t + 2)

0 1 t 1
2 t(t + 1)

0 0 1 t
0 0 0 1

⎤

⎥⎥⎦ .

Consider strategies p = (p1, p2) and q = (q1, q2) for players 1 and 2, respec-
tively. In order to examine t-best replies of player 1 we compute (cf. Lemma
2.1)

Ft
pqσ = (p1q2, p2q2, p2q1, p1q1)A

t.

Dropping the part that does not depend on p and which therefore is not needed
to compute t-best replies of player 1, this results in the vector

p1

(
q2, (t − 1)q2,

1
2
(t2 − t)q2 − q1,

1
6
(t3 − t)q2 − q1(t − 1)

)
. (1)

For t = 1, (1) reduces to p1(q2, 0, −q1, 0). Since player 1 wants to ‘minimize’
this vector, the t-best responses are p1 = 0 if q1 = 0, p1 = 1 if q1 = 1, and any

3 We assume here that both players use the same order t of stochastic dominance, but our results
easily generalize to the case where these orders are different (see Sect. 7).
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0 ≤ p1 ≤ 1 if 0 < q1 < 1. With a similar argument for player 2 (not reproduced
here) we find the set E1: it contains the two pure Nash equilibria of the game,
resulting in o11 and in o22, and all strategy combinations where no player plays
a pure strategy. This is no surprise: in general, E1 consists of all strategy combi-
nations that are a Nash equilibrium for at least one choice of utility functions
representing σ and τ . This is a consequence of the familiar characterization
of first degree stochastic dominance using utility representations, mentioned in
Sect. 2. See also Fishburn (1978), where the result is derived formally.

Next, consider t = 2, so best replies are second degree stochastically undom-
inated. By substituting t = 2 in (1) it follows that for q1 = 1 the 2-best reply
is p1 = 1, for 1 > q1 > 1

2 any 0 ≤ p1 ≤ 1 is a 2-best reply, and for q1 ≤ 1
2 the

2-best reply is p1 = 0. Again after a similar argument for player 2 it follows that
E2 consists of the two pure Nash equilibria of the game plus the set

{
(p, q) | 1

2
< q1 < 1, 0 < p1 <

1
2

}
.

In these mixed strategy equilibria player 1 puts a larger weight on row 2. Row
2 is player 1’s max–min pure strategy: he prefers the worst alternative in row
2, o22, to the worst alternative in row 1, o12. Thus, one might be tempted to
conclude that a higher t leads to max–min play. This, however, is deceptive. As
will turn out later, what is important is that row 2 is the max–min row from the
point of view of player 2: player 2 prefers the worst alternative (for him) of row
2, o21, to the worst alternative of row 1, o12. (A similar consideration holds for
the strategy of player 2.)

Observe also that the 2-best reply correspondences of the players are not
upper semi-continuous (their graphs are not closed).

For t > 2, let q̂1 = (t3 − t)/(t3 + 5t − 6). For 0 ≤ q1 ≤ q̂1 the t-best reply is
p1 = 0, for q̂1 < q1 < 1 any p1 is a t-best reply, and for q1 = 1 the t-best reply
is p1 = 1. The t-equilibria are again the two pure Nash equilibria in the game
together with the collection

{
(p, q) | t3 − t

t3 + 5t − 6
< q1 < 1, 0 < p1 < 1 − t3 − t

t3 + 5t − 6

}
,

For t → ∞ these mixed strategy t-equilibria converge to the pure strategy
combination of row 2 and column 1.

5 Existence and characterization of t-equilibria

The existence of t-equilibria can be proved directly by applying a fixed point
argument to the best-reply correspondences. This proof is not completely
straightforward since the best reply correspondences do not have to be upper
semi-continuous, see the example in the previous section, so that the argument
has to be applied to a suitable sub-correspondence. Details can be found in an
earlier version of the paper (see Perea et al. 2005).
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Alternatively, t-equilibria can be characterized as Nash equilibria for suit-
ably chosen utility functions. Existence then follows from the standard existence
result for Nash equilibrium. This is the approach taken here. For t = 1, this has
already been done in Fishburn (1978).

In the next lemma we consider the game as defined in Sect. 3. The bijection σ

represents the preference relation of player 1. The set Ut was defined in Sect. 2.

Lemma 5.1 Let p ∈ �M, q ∈ �N, and t ≥ 1. Then p is a t-best reply against q if
and only if there is a ut ∈ Ut such that

m∑

i=1

n∑

j=1

piqjut
σ(i,j) ≥

m∑

i=1

n∑

j=1

p′
iqjut

σ(i,j)

for all p′ ∈ �M.

Proof p is a t-best reply against q if and only if there is no p′ ∈ �M such that
Ft

p′qσ
≤ Ft

pqσ with at least one coordinate strictly smaller. This is the case if and
only if

{
x ∈ IRmn | x ≤ Ft

pqσ

} ∩ {
x ∈ IRmn | x = Ft

p′qσ for some p′ ∈ �M
} = {

Ft
pqσ

}
.

By a standard separation argument it follows that the two sets on the left-hand
side of this identity can be separated by a hyperplane through Ft

pqσ with a
nonnegative normal c ∈ IRmn such that Ft

pqσ · c ≤ Ft
p′qσ

· c for all p′ ∈ �M. Since
the second set is a polytope, this normal can be chosen positive (see Shapley
1959, for a detailed argument). By Lemma 2.1 this is equivalent to (pqσ)Atc ≤
(p′qσ)Atc for all p′ ∈ �M. The proof is complete by taking ut := −Atc. ��

Lemma 5.1 can be formulated for player 2 in an analogous way. Then t-
equilibria can be characterized as follows.

Corollary 5.2 Let σ and τ represent the preferences of players 1 and 2, respec-
tively. Let t ≥ 1, p∗ ∈ �M, and q∗ ∈ �N. Then (p∗, q∗) is a t-equilibrium if and
only if there are u, v ∈ Ut such that (p∗, q∗) is a Nash equilibrium for the payoff
functions O → IR defined by oij 	→ uσ(i,j) and oij 	→ vτ(i,j) for players 1 and 2,
respectively.

Since Nash equilibria always exist, Corollary 5.2 implies existence of t-equi-
libria.

Corollary 5.3 Et �= ∅ for every t ≥ 1.

6 Limit behavior of t-equilibria

The example in Sect. 4 suggests some kind of max–min behavior of the play-
ers in a t-equilibrium for t going to infinity. In this section we consider this in
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detail. The setting is the general game model as defined in Sect. 3. Unless stated
otherwise, the number t is arbitrary but fixed. The preferences of the players
are represented by the bijections σ for player 1 and τ for player 2.

For p ∈ �M, the support of p is the set

supp(p) = {i ∈ M | pi > 0}.

For q ∈ �N , supp(q) is defined in the same way. We start with an auxiliary
result.

Lemma 6.1 Let pt ∈ �M and let qt ∈ �N. Let p ∈ �M and q ∈ �N with
supp(p) ⊆ supp(pt) and supp(q) ⊆ supp(qt). Then

(i) if pt is a t-best reply against qt, then p is a t-best reply against qt;
(ii) if qt is a t-best reply against pt, then q is a t-best reply against pt.

Proof Apply Lemma 5.1. ��
Our main results are established in a series of three propositions. Theorem 6.6
summarizes these propositions.

Proposition 6.2 Let I ⊆ M, J ⊆ N, and let (pt, qt)t∈IN be a sequence of pairs of
mixed strategies such that I = supp(pt) and J = supp(qt) for all t ∈ IN.

(i) Let pt be a t-best reply against qt for every t ∈ IN. Then, for every i ∈ M,
there is a j ∈ J such that σ(i, j) < σ(i′, j) for all i′ ∈ I\{i}.

(ii) Let qt be a t-best reply against pt for every t ∈ IN. Then, for every j ∈ N,
there is an i ∈ I such that τ(i, j) < τ(i, j′) for all j′ ∈ J\{j}.

Proof We only prove (i), the proof of (ii) is analogous. Suppose (i) were not
true. Then there is an ı̂ ∈ M such that for every j ∈ J

Ij := {i ∈ I | σ(i, j) < σ(ı̂ , j)} �= ∅.

For every j ∈ J, choose an ij ∈ Ij. Let Î := {ij | j ∈ J}, s := |Î|, 4 and define
p̂ ∈ �M by p̂i = 1/s if i ∈ Î and p̂i = 0 otherwise. We will show that, for t
sufficiently large,

Ft
eı̂ qtσ

≤ Ft
p̂qtσ

. (2)

Since, clearly, the two probability distributions eı̂ qtσ and p̂qtσ in (2) are differ-
ent, this means that at least one of the inequalities must be strict if (2) holds.
Since supp(p̂) ⊆ I = supp(pt) for all t, (2) contradicts Lemma 6.1. This
proves (i).

We are left to prove (2), hence we are left to prove

Ft
eı̂ qtσ

(k) ≤ Ft
p̂qtσ

(k) for all k = 1, . . . , mn. (3)

4 | · | denotes the cardinality of a set.
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Fix k ∈ {1, . . . , mn} and define Jk := {j ∈ J | σ(ı̂ , j) ≤ k}. Then

Ft
eı̂ qtσ

(k) =
mn∑

l=1

(eı̂ qtσ)la
t
lk =

k∑

l=1

(eı̂ qtσ)la
t
lk =

∑

j∈Jk

qt
ja

t
σ(ı̂ ,j),k. (4)

Here, the first equality follows from Lemma 2.1, the second equality from
Lemma 2.2, and the last equality by Lemma 2.2 and the definition of Jk.

Now

Ft
p̂qtσ

(k) =
k∑

l=1

(p̂qtσ)la
t
lk ≥

∑

j∈Jk

qt
jp̂ij a

t
σ(ij,j),k

=
∑

j∈Jk

1
s

qt
ja

t
σ(ij,j),k

≥
∑

j∈Jk

1
s

qt
ja

t
σ(ı̂ ,j)−1,k. (5)

The first equality follows again by Lemmas 2.1 and 2.2. The first inequality
follows since some terms are left out. The second equality follows by definition
of p̂ since ij ∈ Î for every j ∈ J. The last inequality follows by the first statement
in Lemma 2.3 since σ(ij, j) ≤ σ(ı̂ , j) − 1 for every j ∈ J.

If Jk = ∅ then (3) follows immediately from (4) and (5). Otherwise, by the
second statement in Lemma 2.3 there is a t sufficiently large such that for every
k = 1, 2, . . . , mn and j ∈ Jk we have

1
s

qt
ja

t
σ(ı̂ ,j)−1,k ≥ qt

ja
t
σ(ı̂ ,j),k. (6)

Then (3) follows from (4), (5), and (6). ��
Proposition 6.2(i) states that for every row (pure strategy) i in I there must

be a column (pure strategy) j in J such that the resulting outcome oij is the worst
outcome for player 1 in that column restricted to the rows in I. In turn, this
implies |I| ≤ |J|. Similarly, Proposition 6.2(ii) implies |J| ≤ |I|. So we have the
following result.

Corollary 6.3 Let I ⊆ M, J ⊆ N, and let (pt, qt)t∈IN be a sequence of t-equilibria
such that I = supp(pt) and J = supp(qt) for all t ∈ IN. Then |I| = |J|.

If |I| = |J| = 1 in Corollary 6.3, then the sequence of t-equilibria reduces to
the constant Nash equilibrium in which player 1 picks the best element from
the column played by player 2 and player 2 picks the best element from the row
played by player 1.

The next result implies that in Corollary 6.3 the t-equilibria must converge
to pure strategy combinations.

Proposition 6.4 Let I ⊆ M, J ⊆ N, and let (pt, qt)t∈IN be a sequence of t-equi-
libria such that I = supp(pt) and J = supp(qt) for all t ∈ IN. Let ı̂ ∈ I and
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ĵ ∈ J be such that min{τ(i, j) | j ∈ J} < min{τ(ı̂ , j) | j ∈ J} for all i ∈ I\{ı̂} and
min{σ(i, j) | i ∈ I} < min{σ(i, ĵ ) | i ∈ I} for all j ∈ J\{ĵ}. Then (i) limt→∞ pt

ı̂ = 1
and (ii) limt→∞ qt

ĵ
= 1.

Proof We only prove (ii), the proof of (i) is analogous. By Proposition 6.2 and
Corollary 6.3 we may renumber the strategies of the players such that

(a) I = J = {1, . . . , s} for some s ≥ 1;
(b) σ(j, j) < σ(i, j) for every j ∈ J and i ∈ I\{j};
(c) σ(1, 1) < σ(2, 2) < · · · < σ(s, s).

Note that ĵ = s. Let s′ ∈ {1, . . . , s − 1} arbitrary. To prove (ii), it is sufficient
to prove that limt→∞ qt

s′ = 0. Suppose that this is not the case. Then we may
assume that there is an α > 0 such that qt

s′ ≥ α for all t (otherwise there is a
subsequence with this property and we can apply the following argument to
this subsequence). Define the strategy p̂ ∈ �M by p̂i = 1/s′ for i = 1, . . . , s′
and p̂i = 0 otherwise. We will show that p̂qtσ is t-dominated by es′+1qtσ for
sufficiently large t, which contradicts Lemma 6.1 and therefore completes the
proof. So we are left to show that for t sufficiently large

Ft
es′+1qtσ

(k) ≤ Ft
p̂qtσ

(k) for every k = 1, . . . , mn. (7)

(Since the probability distributions es′+1qtσ and p̂qtσ are clearly different, at
least one of the inequalities in (7) must be strict.)

Let k ∈ {1, . . . , mn}. By (b) and Lemma 2.3 we can choose t1 such that for all
t ≥ t1 we have

at
σ(j,j),k ≥ s at

σ(s′+1,j),k for all j = 1, . . . , s′ − 1. (8)

Also by (b) and Lemma 2.3 we can choose t2 such that for all t ≥ t2 we have

αat
σ(s′,s′),k ≥ 2s qt

s′a
t
σ(s′+1,s′),k. (9)

By (b), (c), and Lemma 2.3 we can choose t3 such that for all t ≥ t3 we have

αat
σ(s′,s′),k ≥ 2s

∑

j∈J: j≥s′+1

qt
ja

t
σ(s′+1,j),k. (10)
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Then, for t ≥ max{t1, t2, t3}, we have

Ft
es′+1qtσ

(k) =
∑

j∈J: σ(s′+1,j)≤k

qt
ja

t
σ(s′+1,j),k

=
∑

j∈J: j<s′, σ(s′+1,j)≤k

qt
ja

t
σ(s′+1,j),k

+
∑

j∈J: j≥s′, σ(s′+1,j)≤k

qt
ja

t
σ(s′+1,j),k

≤
∑

j∈J: j<s′

1
s

qt
ja

t
σ(j,j),k + 1

2s
αat

σ(s′,s′),k + 1
2s

αat
σ(s′,s′),k

≤ Ft
p̂qtσ

(k),

where the first inequality follows from (8), (9), and (10). This implies (7) and
completes the proof of the lemma. �

Proposition 6.4 has the following converse.

Proposition 6.5 Let I ⊆ M and J ⊆ N satisfy

(i) for every i ∈ M, there is a j ∈ J such that σ(i, j) < σ(i′, j) for all i′ ∈ I\{i};
(ii) for every j ∈ N, there is an i ∈ I such that τ(i, j) < τ(i, j′) for all j′ ∈ J\{j}.

Let t ∈ IN. Then there are pt ∈ �M and qt ∈ �N with supp(pt) = I, supp(qt) = J,
and (pt, qt) ∈ Et.

Proof Note that, as before, (i) and (ii) imply |I| = |J|. If |I| = |J| = 1, then
there is a pure Nash equilibrium (pt, qt) ∈ Et with supports I and J. Assume
now that |I| = |J| ≥ 2. As in the proof of Proposition 6.4 we may renumber the
pure strategies of the players such that

(a) I = J = {1, . . . , s} for some s ≥ 2;
(b) σ(j, j) < σ(i, j) for every j ∈ J and i ∈ I\{j};
(c) σ(1, 1) < σ(2, 2) < · · · < σ(s, s).

Define qt ∈ �N with supp(qt) = {1, . . . , s} such that

qt
j/qt

j−1 = m n at
1,mn for every j = 2, . . . , s. (11)

We will show that every p ∈ �M with supp(p) ⊆ I is a t-best reply against qt.
Since we can define pt analogously and show that every q ∈ �N with supp(q) ⊆ J
is a t-best reply against pt, the proof is complete.

So let p ∈ �M with supp(p) ⊆ I. Assume, contrary to what we wish to prove,
that there is a p′ ∈ �M such that pqt is t-dominated by p′qt. We first argue that
without loss of generality supp(p) ∩ supp(p′) = ∅. For, suppose that i is an ele-
ment in this intersection, and let α := min{pi, p′

i}. Define p̄ := 1/(1−α) (p−αei)

and p̄′ := 1/(1 − α) (p′ − αei). Then p̄, p̄′ ∈ �M, and p̄qt is still t-dominated
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by p̄′qt (since p̄qt and p̄′qt arise from pqt and p′qt, respectively, by first sub-
tracting the same amount from the same coordinates and next rescaling, so that
the inequalities of the stochastic dominance relation do not change), whereas
i /∈ supp(p̄) ∩ supp(p̄′) and supp(p̄) ⊆ I.

So assume that supp(p) ∩ supp(p′) = ∅, and take ı̂ ∈ supp(p′) such that
p′

ı̂ ≥ 1/m. If ı̂ ∈ I then let ĵ := ı̂ . Then, by condition (b), σ(ı̂ , ĵ ) < σ(i, ĵ ) for
all i ∈ I\{ı̂} , hence for all i ∈ supp(p) in particular. If ı̂ ∈ M\I then take ĵ ∈ J
such that σ(ı̂ , ĵ ) < σ(i, ĵ ) for all i ∈ I, hence for all i ∈ supp(p): this is possible
by condition (i) in Proposition 6.2. Together with conditions (b) and (c) this
implies

σ(ı̂ , ĵ ) < σ(i, j) for all i ∈ supp(p) and j ∈ {ĵ , . . . , s}. (12)

Let k := σ(ı̂ , ĵ ). Then

Ft
pqtσ

(k) =
k∑

l=1

(pqtσ)la
t
lk =

ĵ−1∑

j=1

qt
j

⎛

⎝
∑

i∈I: pi>0, σ(i,j)<k

pi at
σ(i,j),k

⎞

⎠

≤
ĵ−1∑

j=1

qt
ja

t
1,mn < nqt

ĵ−1 at
1,mn =

qt
ĵ

m

≤ 1
m

qt
ĵ
at
σ(ı̂ ,ĵ ),k ≤ Ft

p′qtσ
(k) (13)

where the first equality follows from Lemma 2.1; the second equality by (12);
the first inequality by Lemma 2.2; the second (strict) inequality and the third
equality by (11); the third inequality since at

σ(ı̂ ,ĵ ),k ≥ 1; and the final inequality
by Lemma 2.1 and the choice of p′

ı̂ ≥ 1/m.
Since (13) contradicts the assumption that pqt is t-dominated by p′qt, the

proof of the lemma is complete. ��
Propositions 6.2, 6.4, and 6.5, and Corollary 6.3 can be summarized as follows.

Theorem 6.6 If I ⊆ M, J ⊆ N, and if (pt, qt)t∈IN is a sequence of t-equilibria such
that I = supp(pt) and J = supp(qt) for all t ∈ IN, then (i) and (ii) in Proposition
6.5 hold, |I| = |J|, and the sequence of t-equilibria converges to the pure strat-
egy combination (ı̂ , ĵ ), where ı̂ and ĵ are as in Proposition 6.4. Conversely, if
∅ �= I ⊆ M and ∅ �= J ⊆ N satisfy (i) and (ii) in Proposition 6.5, then a sequence
of t-equilibria with supports I and J for players 1 and 2, respectively, exists.

As announced earlier, the results in this section imply that, as t becomes
large, the equilibrium behavior of the players converges to max–min play in
a specific sense. Take any sequence of t-equilibria with (without loss of gen-
erality) constant supports I and J of the players’ strategies. Then, in the limit,
player 1 puts all weight on that strategy (row) in I in which the worst outcome
for player 2 with respect to the strategies (columns) in J is maximal among all
rows in I; and player 2 puts all weight on that column in J in which the worst
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outcome for player 1 with respect to the rows in I is maximal among all columns
in J. Observe that this can be interpreted as altruistic behavior in equilibrium.
The next examples provide further illustrations.

Example 6.7 Consider the following 3 × 3 game, in which the numbers express
the ordinal preferences of the players:

⎡

⎢⎣
1, 1 6, 5 9, 4

5, 6 2, 2 8, 7

4, 9 7, 8 3, 3

⎤

⎥⎦ .

In this game, I := M = {1, 2, 3} and J := N = {1, 2, 3} clearly satisfy (i) and (ii)
in Proposition 6.5. Obviously, ı̂ = ĵ = 3. For every t ∈ IN the t-equilibrium used
in the proof of Proposition 6.5 is defined by

pt = qt =
(

1
1 + A + A2 ,

A
1 + A + A2 ,

A2

1 + A + A2

)

where A = 9(7 + t)!/8!(t − 1)!. In this equilibrium the weights on the first two
rows (and columns) converge to 0 and pt

1/pt
2 (and qt

1/qt
2) converges to zero as

well. That is, the weight on the first row (column) goes to 0 much faster than the
weight on the second row (column). The latter phenomenon is not a necessary
one: in the present example, for instance, it is also possible to have a sequence
of t-equilibria with equal weights on the first two rows (columns). It can be
verified that taking pt

1 = pt
2 = qt

1 = qt
2 =: αt such that (1 − 2αt)/αt > at

1,3 + at
1,8

for every t ∈ IN is again a t-equilibrium. Finally, I = M and J = N are the only
subsets of pure strategies satisfying (i) and (ii) in Proposition 6.5, hence the only
supports of t-equilibria. Hence, in the limit each player plays his third strategy,
resulting in the ‘payoffs’ (3, 3).

Example 6.8 Consider the following 3 × 3 game:

⎡

⎢⎣
4, 4 8, 5 3, 6

5, 8 7, 7 2, 9

6, 3 9, 2 1, 1

⎤

⎥⎦ .

The following combinations satisfy (i) and (ii) in Proposition 6.5:

(a) I = {3}, J = {1}, resulting in (3, 1) in the limit;
(b) I = {1}, J = {3}, resulting in (1, 3) in the limit;
(c) I = {1, 3}, J = {2, 3}, resulting in (1, 2) in the limit;
(d) I = {2, 3}, J = {1, 3}, resulting in (2, 1) in the limit;
(e) I = M, J = N, resulting in (2, 2) in the limit.
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This means that the ‘payoff pairs’ that can arise as limits of t-equilibria are
(6, 3), (3, 6), (8, 5), (5, 8), and (7, 7).

7 Concluding remarks

7.1 Extensions

There are some obvious possible extensions of the results in this paper.
First, the definitions and results in Sects. 3 and 5 can be generalized quite eas-

ily to games with more than two players. The same, however, is far from obvious
for the asymptotic results of Sect. 6. For this reason, we chose to present the
entire paper only for two-person games.

Second, the implicit assumption in the concept of t-equilibrium that the value
of t is the same for both players can be omitted. All results would also hold for
(t1, t2)-equilibria, where (p, q) ∈ �M × �N is called a (t1, t2)-equilibrium if p is
a t1-best reply against q and q is a t2-best reply against p.

Third, the degree of stochastic dominance t can be varied continuously in-
stead of in discrete steps. Again, all results would continue to hold for this
extension.

Fourth, the assumption of the players having a linear ordering (no indiffer-
ences) on the certain alternatives is not an essential one, but it makes the
asymptotic results of Sect. 6 much cleaner.

Fifth, modelling incomplete preferences by stochastic dominance is an in our
view justifiable but also quite specific choice. Dubra et al. (2004) characterize
incomplete preferences satisfying the von Neumann–Morgenstern axioms by
identifying characterizing classes of utility functions that play the same role
as the classes Ūt in our paper, cf. the end of Sect. 2. This points at a general
approach that can be used to extend some of the results of the paper.

Sixth (and related to the second and third points above), we conjecture that
the precise way in which increasing aversion to bad outcomes is modelled in
the present paper – by t-degree stochastic dominance for increasing t – is not
essential for the limit result. This is left for future research.

7.2 Related literature

There is quite some literature on noncooperative games with only ordinal pref-
erences: many economic games (for instance, Cournot or Bertrand oligopoly
games) belong to this category, but also games used for implementing social
choice correspondences, to name just a few examples. However, apart from
Fishburn (1978) the only references to ordinal games with mixed strategies that
we know of are Börgers (1993) and Rothe (1995). Börgers (1993) proposes a
definition of rationalizability in which only ordinal preferences over outcomes
are assumed to be common knowledge. Rothe (1995) considers equilibrium
selection in 2 × 2-games under the first-degree stochastic dominance criterion.
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A Remaining proofs

Proof of Lemma 2.2. The proof is by induction on t . For t = 1 the formula
holds by definition of A. Let the formula be true for all k < t, where t ≥ 2. Then
for all i, j ∈ {1, . . . , �},

at
ij =

�∑

l=1

at−1
il alj =

�∑

l=i

at−1
il alj, (14)

where the second equality holds by induction. If i > j then every alj = 0 in the
RHS of (14) since l > j. If i ≤ j then (14) implies by induction

at
ij =

j∑

l=i

at−1
il =

j∑

l=i

(t − 2 + l − i)!
(l − i)!(t − 2)! . (15)

We are done if we can prove

j∑

l=i

(t − 2 + l − i)!
(l − i)!(t − 2)! = (t − 1 + j − i)!

(j − i)!(t − 1)! .

We show this again by induction. For j = i it is immediate. Let the equality hold
for i, . . . , j − 1, then

j∑

l=i

(t − 2 + l − i)!
(l − i)!(t − 2)! = (t − 1 + j − 1 − i)!

(j − 1 − i)!(t − 1)! + (t − 2 + j − i)!
(j − i)!(t − 2)!

= (t − 1 + j − i − 1)!(j − i) + (t − 2 + j − i)!(t − 1)

(j − i)!(t − 1)!
= (t − 1 + j − i)!

(j − i)!(t − 1)! .

This completes the proof. ��

Proof of Lemma 2.1. The proof is by induction on t . For t = 1 the identity in
the lemma holds by definition. Assume it holds for every k < t (t ≥ 2). Let
l ∈ {1, . . . , �}. Then

Ft
r = Ft−1

r A = rAt−1A = rAt,

where the second equality follows by induction. ��
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Proof of Lemma 2.3. By Lemma 2.2,

at
ij

at
i′j

= (t − 1 + j − i)!
(j − i)!(t − 1)! · (j − i′)!(t − 1)!

(t − 1 + j − i′)!

= (j − i + 1) · (j − i + 2) · · · (j − i + t − 1)

(j − i′ + 1) · (j − i′ + 2) · · · (j − i′ + t − 1)

= (j − i′ + t) · (j − i′ + t + 1) · · · (j − i + t − 1)

(j − i′ + 1) · (j − i′ + 2) · · · (j − i)
,

hence at
ij ≥ at

i′j and limt→∞ at
ij/at

i′j = ∞. ��
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