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Abstract
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1. Introduction

May it be in my interest to support rivals who can end up helping my
friends? Can it be rational to refrain from supporting friends who might end
up helping some of my rivals in the future? Questions of this type may arise
in many situations where supporting an agent is likely to have important
future consequences which I can no longer control once I supported him; the
agent I did help to build up strength can use it later on to support others,
regardless of my views about such action. Our aim in this paper is to provide
a simple model where delay in supporting friends, or deliberate support of
opponents can arise as the result of strategic considerations.

The transfer of in'uence, and the concern for its future consequences, are
present in a wide variety of social, economic and political environments.
Consider, for instance, a department at a university in which members have
preferences over colleagues. The in'uence of each member depends on the
support it gets from colleagues and everybody tries to organize his sup-
port in such a way as to help his friends as much as possible. This might
lead to situations where members support less-preferred colleagues because
they anticipate on the fact that these colleagues will support some of their
friends. Or, conversely, do not support friends in fear of their future support
behavior.

The same kind of reasoning applies to 7rms that consider transferring tech-
nology to other 7rms. Once the transfer has taken place, the receiving 7rm
might use the technology to transmit it to others in the future. Kotter (1979)
stresses the importance of the indirect e6ect of in'uence in management, by
saying that ‘a manager can in'uence someone indirectly by directly in'u-
encing others who in turn have impact on that person’. Similar phenomena
occur when studying the support between political parties in a country, or any
other political situation where the political in'uence depends on the support
received from others.

A recent paper by Barber)a et al. (2000) has analyzed a similar phe-
nomenon. Speci7cally, they consider societies which admit new members by
vote among those who are already in. Since newly elected members become
future voters, agents in their model are also concerned with the future actions
of potential entrants. There is, however, a fundamental di6erence between our
model and that of Barber)a et al. Once an agent is elected, he gets the full
right to vote. If he is not elected, he has no right at all. Since it is assumed
that one vote is enough to be elected, the fact whether my individual voting
behavior makes a di6erence on the 7nal outcome depends heavily on the
votes deposited by others. There is thus a basic discontinuity in the transfer
of in'uence from present voters to potential entrants. This discontinuity has a
number of important consequences in reality, and it introduces a fundamental
multiplicity of equilibria in the theoretical model.
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By contrast, our paper concentrates on those cases where the in'uence
gained by agents depends continuously on the support they get from others.
Even if support is still modeled as a binary variable, acquired in'uence grows
as one gets supported by more, and more in'uential people. In'uence is here
a simple variable, which summarizes possibly quite di6erent and complex
abilities of agents. Support is also a summary variable, standing for those
social mechanisms which can be used to transfer in'uence. Whenever our
analysis can be used as an approximation, the reader will have to identify
these elementary variables with some basic features of the phenomenon at
hand. A priori, it is impossible to decide whether the impact of support on
in'uence is better modeled as a lump or continuous variable, and reality
will always lie in between. We o6er our model as a polar case, in which
surprisingly simple characterizations of equilibrium behavior can be obtained,
and the dynamics of support can be clearly understood.

We propose a stylized dynamic model in which forward looking agents
consider the possibility of supporting others, knowing that their support will
induce changes in the future distribution of in'uence, and that they may
not control the impact of their initial actions once these have contributed to
strengthen other agents. We assume that the decision to support another agent,
or not to, is binary; hence, we do not allow for intensities in the support of
others.

The presence of every agent A induces (positive or negative) externalities
for the other agents and it is assumed that the magnitude of the externality
depends proportionally on A’s in'uence. If, for instance, agents A and B are
‘friends’, B derives a positive utility from A’s presence and this utility grows
if A becomes more in'uential. On the other hand, if the e6ect of A on B
were negative, the e6ect becomes worse if A’s in'uence grows.

The impact of support on the in'uence distribution among agents is mod-
eled as follows: the in'uence of an agent increases proportionally to the total
in'uence of agents that support him. This re'ects the idea that in'uential
agents have more impact than others since their contribution, when support-
ing, is more signi7cant. The above-described relationship between in'uence
and support allows us to capture two key phenomena. First of all, support-
ing another agent produces the direct e6ect of increasing his in'uence and
thereby a6ecting your own utility (in a positive or negative sense). A second
e6ect is that the receiving agent may use his increase of in'uence to support
other agents in the future. As such, by supporting an agent, one implicitly
transmits in'uence to other agents, too.

The paper proceeds as follows. Section 2 introduces our model. Section 3
shows that the dynamic game, in which the agents plan their support behavior
during a 7nite number of stages, has an essentially unique subgame perfect
equilibrium. Moreover, the equilibrium has an appealingly simple structure:
the agents’ support behavior at each stage is independent of the history up
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to that stage and is characterized by marginal value functions which can
be computed via some recursive formula working backwards from the 7nal
stage. Roughly speaking, the marginal value functions re'ect at each stage
the future increase of utility that results from supporting a given agent. Put
formally, the marginal value Vt(�; x) measures the future impact for agent �
of supporting agent x at stage t. The equilibrium states that agent � should
always support exactly those agents x having positive marginal value.

In Section 4, we introduce a model with a continuum of agents and propose
a concept of equilibrium for this setting. The equilibria of the continuum are
proven formally to provide good approximations for the equilibria of mod-
els with a 7nite but large enough set of agents. This allows us to generate
examples for the continuum case (which is computationally much more man-
ageable), and yet be sure that they have approximate counterparts for 7nite
societies, which are indeed those for which our model and equilibrium con-
cepts are more appropriate.

Section 5 is devoted to the analysis of speci7c models exhibiting interesting
dynamic features. We provide examples of societies where agents would sys-
tematically avoid to support enemies, and of other where they would transfer
in'uence to some of their enemies. Moreover, we can be very explicit about
the features of our model which account for these phenomena.

In Section 6, we provide a suKcient condition on the agents’ preferences
over others which guarantees that support behavior remains constant over
time. Section 7 studies optimal support behavior in the presence of an in7-
nite horizon. In contrast to the 7nite horizon case, multiple subgame perfect
equilibria may exist and equilibria need no longer be history independent.
We conclude in Section 8.

2. The model and an example

Before presenting the formal model, we 7rst lay out the intuition behind
it. We consider a group of agents in which everybody produces externalities
on the well-being of others. There are many di6erent ways in which an
agent � can a6ect the utility of others: agents can simply derive (positive or
negative) utility from �’s presence or � could take certain decisions which
a6ect the well-being of other agents. In this model, we abstract away from
the underlying factors inducing these externalities and simply assume that
an agent’s utility depends on the presence of others. As such, these utilities
should be viewed as the 7nal result of some possibly complicated interaction
process among agents.

A key factor in the model is the fact that the externality produced by agent
� on the utility of others is not exogenous but varies over time, depending on
actions of other agents. More precisely, we assume that this externality (the
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intensity with which it a6ects others) is proportional to some factor which
we call the ‘in'uence’ of �. The word ‘in'uence’ should thus be read as the
impact that � has on the utility of others.

We realize that in reality an agent’s in'uence depends on many di6erent
factors: too many to be captured within one model. Among these factors,
we 7lter an important one, namely the support an agent gets from other
agents. Here, support should be read in a broad sense since it could take
many forms, varying from 7nancial or technological support between 7rms
to political support between parties. Important is that an agent’s in'uence
changes over time due to the support it gets from others. On the other hand,
this agent can use his in'uence to support others in the future and thereby
increase the in'uence of other agents. It is this strong mutual relationship
between supporting others on one hand and the in'uence of agents on the
other hand that is at the very heart of our model. Formally, the model is as
follows.

The group of agents is given by a countable space �= {�1; �2; : : :}. At
stages t = 1; : : : ; T agents �∈� simultaneously choose to support a set St(�)⊂
� of agents. For the sake of convenience, it is assumed that an agent can
support himself (i.e. St(�) may include �). Remark 3 after Theorem 3.1
demonstrates that the analysis would not really change if it were assumed
that agents can only support other agents.

In our context, support is modeled as a binary variable: one can either
support an agent or not support him. We do not allow for di6erent levels of
support.

Before agents come into action there is an initial distribution of in'uence
among the agents which is given by a strictly positive measure 1 
0 on �.
The support behavior of agents induces changes in the in'uence distribution.
We assume that the in'uence of an agent increases proportionally to the total
in'uence of agents that support him in this stage. This means that supporting
an agent will always contribute to his strength, and this contribution will be
more signi7cant if the supporting agent is more in'uential. Formally, let 
t

be the function representing the in'uence distribution among agents at stage
t. The evolution of in'uence over time is given by the recursive equation


t(�) =
t−1(�) + �(�)
∑

x∈�:�∈ St(x)


t−1(x); (1)

where � is some strictly positive measure on �. 2 Here, �(�) can be viewed
as a measure for �’s sensitivity to support. If, for instance, �(�) is high,

1 A measure on a countable space is strictly positive if it assigns strictly positive mass to
every single point.

2 Here, we implicitly assume that
∑

x∈�:�∈ St (x)

t−1(x)¡∞.
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supporting � contributes considerably to his in'uence whereas a low �(�)
allows only for a small increment of his in'uence.

The utility for agent � at stage t is given by

Ut(�) =
∑
x∈�

u(�; x)
t(x):

So, �’s utility depends linearly on the in'uence of each agent x and the
coeKcient u(�; x) can be interpreted as some normalized utility for agent �
induced by the presence of x. The function u :�×� → R generating these
utility coeKcients is called a utility pro)le. If u(�; x)¿ 0, then x’s presence
is good for � and we say that x is a friend of �. If u(�; x)6 0, agent x
is called an enemy of �. By comparing the magnitudes of u(�; x), one can
distinguish between big friends and small friends, big enemies and small
enemies.

In particular, �’s utility increases if his friends become more in'uential
whereas his utility decreases if the in'uence of enemies becomes larger. The
overall utility for � is equal to

U (�) =
T∑

t = 1

�tUt(�);

where �t are non-negative constants re'ecting the relative contributions of
stage utilities to the total utility. Canonical time separable utilities such as
average utility and discounted utility can be modeled by choosing �t = 1=T
and �t = �t , respectively.

After each stage, all agents observe the groups of agents St(�) supported by
the others. A strategy for agent � is to choose at every stage t a set St(� | ht)
of agents to be supported by him after any possible history ht at stage t.
Here, a history ht is a sequence (Sk(�))k6 t−1; �∈� consisting of groups Sk(�)
supported by agents at previous stages.

The quadruple �= (�; u; �; 
0) consisting of the set of agents, the utility
pro7le, the support sensitivity measure and the initial distribution of in'uence,
is called a society. The dynamic game induced by this society is denoted by
�(�).

In order to illustrate the di6erent ingredients of our model, consider the
following example.

Example 2.1. A department at a university has three research areas: A; B
and C. During two consecutive years, the department will hire new scientists
in these areas. At times t = 1; 2, the current members must decide about the
number of people to be hired in each area. To this purpose, the department
has agreed upon the following rule: each member can vote for (one or more)
areas and the number of new positions in a given area is proportional to the
number of votes this area gets, with proportionality coeKcient 0:5. For sake of
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symmetry, assume that members belonging to the same area have identical
preferences and will therefore vote identically. Each area �∈{A; B; C} can
therefore be regarded as an individual agent. Let 
t(�) be the number of
members working in area � at period t and St(�)⊂{A; B; C} the set of areas
voted for by � at the beginning of time t. According to the voting rule


t(�) =
t−1(�) + 0:5
∑

x∈{A;B;C}
�∈ St(x)


t−1(x)

for t = 1; 2. 3 Here, 
0 denotes the area con7guration in the department before
the voting procedure starts. Suppose, for instance, that the initial area con7g-
uration is given by 
0 = (10; 5; 15), meaning that there are 10 area A people,
5 area B people and 15 area C people in the department before voting starts.

In this context, the numerical representation 
t(�) of area � at time t can
be regarded as the ‘in'uence’ of this area within the department. An area �
can transfer in'uence to another area x (or, support x) by voting for x. The
increase of x’s in'uence is proportional to the aggregate in'uence of areas
that support it.

Suppose that the utility for a member of area � at time t is given by

Ut(�) = u(�;A)
t(A) + u(�;B)
t(B) + u(�;C)
t(C);

where u(�; x) re'ect agent �’s preferences over the di6erent areas. The (posi-
tive or negative) e6ect of an area x on a member of area � is thus proportional
to the number of department members currently working in area x. Let the
utilities u(�; x) be given by the following matrix:

A B C

A 2 1 −6
B −4 3 1
C 2 −1 6

The aggregate utility for agent � during the two periods is given by

U (�) =U1(�) + U2(�):

The two-stage game de7ned above yields a unique subgame perfect voting
behavior, given by the following table

3 In case 
t(�) is not integer, the department will hire part time workers. If, for instance, a
scientist is hired on a 50% basis, his vote will only count for 50%.



2058 S. Barber�a, A. Perea /Journal of Economic Dynamics & Control 26 (2002) 2051–2092

t = 1 t = 2

A {A} {A; B}
B {B;C} {B;C}
C {A; B; C} {A;C}

This equilibrium behavior is independent of the initial distribution of areas 
0.
Moreover, the behavior speci7ed at stage 2 is optimal for any combination
of votes that ocurred at stage 1.

At the last stage, every area simply votes for its preferred areas (areas x
giving positive utility u(�; x)), since there are no future consequences which
have to be taken into account. At the 7rst stage, each area faces a tradeo6
between the immediate consequence of voting for an area (department hires
new people in this area) and its future consequences (newly admitted mem-
bers will have the right to vote at stage 2). For instance, area A will not
vote for B (despite its positive direct e6ect) at stage 1 since it knows that
B will vote for C at stage 2, inducing a negative e6ect which outrules the
positive e6ect at stage 1. On the other hand, C will vote for B at the 7rst
stage (despite the negative direct e6ect) since it knows that B will vote for
C at the next stage, compensating the negative e6ect at the 7rst stage.

3. Optimal support behavior

In the example above, we have seen that there is a unique subgame per-
fect equilibrium in the two-stage game. In this section, we show that this is
not a coincidence: every dynamic game induced by the model has an essen-
tially unique subgame perfect equilibrium. By ‘essentially unique’, we mean
that it is unique up to ties occurring when an agent � is indi6erent between
supporting another agent x or not. Moreover, the subgame perfect equilib-
rium has a very simple structure. First of all, the support behavior at every
stage is history independent, hence an agent need not keep track of all the
groups that have been supported at previous stages. Another property is that
the equilibrium behavior does not depend on the initial in'uence distribu-
tion. Finally, the equilibrium is characterized by a sequence of the so-called
‘marginal value functions’ (one for every stage) which can be computed re-
cursively, starting at the 7nal stage. Intuitively, a marginal value function at
a given stage assigns to every pair (�; x) a measure for the future increase
in �’s utility which results from supporting x at this stage. The equilibrium
states that at every stage agent � should exactly support those agents x that
have positive value.
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In order to make our statement precise, we need some more de7nitions.
A strategy pro7le S (prescribing a strategy for each agent) is called a sub-
game perfect equilibrium if at any stage t and after any history ht , the group
of agents St(� | ht) supported by agent � maximizes �’s continuation payo6,
given the behavior of other agents at this stage and the behavior of all agents
at future stages.

In general, there may exist multiple subgame perfect equilibria. However,
multiplicity is solely due to the fact that at some points in the game an agent
� is indi6erent between supporting another agent x and not supporting him.
In this case, both supporting x and not supporting x can be part of a subgame
perfect equilibrium. In order to eliminate such multiplicity, we introduce a
tie breaking rule which states that in case of indi6erence, the agent x should
be supported. Hence, the agent should always support the largest group that
maximizes his continuation payo6. Subgame perfect equilibria satisfying this
tie breaking rule are called maximal subgame perfect equilibria.

The tie breaking rule is rather arbitrary. One could also require that in
case of indi6erence, the agent x should not be supported. In Remark 2 after
Theorem 3.1, we show how optimal support behavior could be characterized
for this alternative tie breaking rule.

Using the 7rst tie breaking rule, we show that there is a unique maximal
subgame perfect equilibrium which is given by a sequence of the so-called
‘marginal value functions’. For every stage t, let the marginal value function
Vt : �×� → R be given by the recursive formula

VT (�; x) = �Tu(�; x)

and

Vt(�; x) = �tu(�; x) + Vt+1(�; x) +
∑

y:Vt+1(x;y)¿ 0

Vt+1(�;y) · �(y)

for all t¡T . In equilibrium, agent � at stage t supports exactly those agents
x for which Vt(�; x)¿ 0.

Theorem 3.1. For every society �; the game �(�) contains a unique maxi-
mal subgame perfect equilibrium; which is the history independent strategy
pro)le S given by

St(� | ht) = {x |Vt(�; x)¿ 0}

for all t; ht and �.

Before stating the proof of this result, we make a few remarks.
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Remark 1. Marginal value functions versus ‘real’ value functions. Let us
7rst discuss the role of the marginal value functions, which are key in de-
termining the agents’ equilibrium behavior. First of all, it is important to
stress that these marginal value functions are di6erent from the ‘real’ value
functions used in dynamic programming. A ‘real’ value function for agent �
should specify at every stage and for every possible action available to agent
� at this stage the future utility he would obtain by choosing this action,
given the equilibrium behavior at future stages. In the present context, an
action for agent � at stage t corresponds to choosing a subset St(�) of agents
he wants to support. From Eq. (3:4) in the proof of Theorem 3.1, it follows
that the value for agent � of supporting the set of agents St(�) at stage t is
equal to

Ṽ �; t(St(�)) =
T∑

� = t

��U�(�) =C + 
t−1(�)
∑

x∈ St(�)

Vt(�; x) �(x);

where C is a term which does not depend on �’s behavior. This equation
thus establishes the relationship between the ‘real’ value functions and the
marginal value functions in this particular context. From the equation above
it is easily seen that agent �’s maximization problem at stage t, namely
choosing the set St(�) which maximizes his value (using our tie breaking
rule), is solved by supporting those agents x with Vt(�; x)¿ 0. Hence, keep-
ing track of the marginal value functions is suKcient to solve the dynamic
programming problem faced by the agents in this game. Since the marginal
value functions are easier to handle than the real value functions, we use
the former to compute the equilibrium behavior. Another reason for using
these marginal value functions instead of the real value functions is that
the former re'ect directly the di6erence between ‘liking an agent x’ (that
is, attach positive utility u(�; x) to agent x), and the ‘willingness to support
agent x at a given stage’, re'ected by the marginal value Vt(�; x) at this
stage.

The recursive equation for the marginal value functions can be seen as
a multi-agent variant of the Hamilton–Jacobi–Bellman equation in dynamic
programming. It states that the marginal value Vt(�; x) for � of supporting x
at stage t can be decomposed into an immediate e6ect �tu(�; x) and a future
e6ect, given by the last two terms. The future e6ect consists of the corre-
sponding marginal value Vt+1(�; x) at the next stage and an interaction e6ect
represented by the sum. The interaction e6ect describes the consequences for
� of having x support other agents in the future: an e6ect which does not
occur in ‘standard’ one-agent dynamic programming. 4

4 In one-person dynamic programming with time separable utility functions, the value function
at stage t is simply the sum of the immediate e6ect and the value at the next stage.
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The use of value functions in dynamic one-person decision problems is
widely spread (see Streufert, 1990; Kreps and Porteus, 1979; among many
others). Applications of value functions to dynamic games can be found, for
instance, in BaRsar and Olsder (1995), Theorem 6:6 and Gomes et al. (1999).

Remark 2. On the choice of the tie breaking rule. Theorem 3.1, together
with the recursive equation for the marginal value functions, characterize the
optimal support behavior under a speci7c tie breaking rule which states that
an agent should always support the largest group of agents that maximizes
his continuation payo6. As we have mentioned earlier on in this section, one
could use an alternative tie breaking rule which states that an agent should
always support the smallest group of agents that maximize his continuation
payo6. That is, if an agent � is indi6erent between supporting agent x or not
supporting him, � should not support x.

Theorem 3.1 and the recursive equation for the marginal value functions
can be easily adapted to this new tie breaking rule. The new marginal value
functions are characterized by

VT (�; x) = �Tu(�; x)

and

Vt(�; x) = �tu(�; x) + Vt+1(�; x) +
∑

y:Vt+1(x;y)¿0

Vt+1(�;y) · �(y);

whereas the unique optimal support behavior would be given by the strategy
pro7le S satisfying

St(� | ht) = {x |Vt(�; x)¿0}
at every stage t. In particular, uniqueness of optimal behavior is guaranteed
also under this alternative tie breaking rule.

The following example shows that the two tie breaking rules will induce
di6erent equilibrium behavior in general. Consider a society with three agents,
A; B and C, and two periods. Let the utilities u(�; x) be given by the follow-
ing table:

A B C

A 1 0 0
B −1 2 2
C −1 2 2

Suppose that �(�) = 1 for all �∈{A; B; C}, the initial in'uence distribution is
given by 
0 = (1; 1; 1) and that �t = 1 for t = 1; 2. The reader may check that
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under the 7rst tie breaking rule (in which an agent supports another agent in
case of indi6erence), the agents’ equilibrium behavior is as follows:

t = 1 t = 2

A {A; B; C} {A; B; C}
B {A; B; C} {B;C}
C {A; B; C} {B;C}

The induced in'uence distributions at periods 1 and 2 are 
1 = (4; 4; 4) and

2 = (8; 16; 16) respectively, whereas the overall utilities for the agents are
given by U (A) = 12 and U (B) =U (C) = 68.

Under the second tie breaking rule (in which an agent does not support
another agent in case of indi6erence) the agents act according to the table
below.

t = 1 t = 2

A {A} {A}
B {B;C} {B;C}
C {B;C} {B;C}

The in'uence distributions are given by 
1 = (2; 3; 3) and 
2 = (4; 9; 9), re-
spectively, and the utilities received by the agents correspond to U (A) = 6
and U (B) =U (C) = 42.

Remark 3. If agents cannot support themselves. In some cases it would be
reasonable to assume that an agent’s in'uence can only depend on the support
received from others. A possible way to adapt our model to this phenomenon
is to restrict the strategy spaces of the agents by allowing them only to support
other agents. That is, at every stage t the set of agents St(�) supported by
� cannot contain �. Again, the marginal value functions and Theorem 3.1
can be adapted to this modi7cation. The recursive equation characterizing the
value functions would be

VT (�; x) = �Tu(�; x)

and

Vt(�; x) = �tu(�; x) + Vt+1(�; x) +
∑

y �= �:Vt+1(x;y)¿ 0

Vt+1(�;y) · �(y);
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whereas the optimal support behavior would be given by the strategy pro7le
S where

St(� | ht) = {x∈� \ {�} |Vt(�; x)¿0}

for every stage t.

Remark 4. On the time independence of �. As an extension of the present
model we could allow the parameter �(�), re'ecting agent �’s sensitivity to
support, to depend on the stage t, for instance to re'ect the phenomenon that
past in'uence would vanish with the passage of time. In this case, denote by
�(�; t) the value of �(�) at stage t. The marginal value functions in this new
situation would be given by

VT (�; x) = �Tu(�; x)

and

Vt(�; x) = �tu(�; x) + Vt+1(�; x) +
∑

y:Vt+1(x;y)¿ 0

Vt+1(�;y) · �(y; t);

whereas Theorem 3.1 would remain unchanged.

Proof of Theorem 3.1. Let S be a strategy pro7le. We show by induction
on t that the unique maximal subgame perfect behavior at stage t is given
by St(� | ht) = {x |Vt(�; x)¿ 0}.

We start at the 7nal stage T . Let hT be an arbitrary but 7xed history
up to stage T and let � be an agent. Independently of the other agents’
behavior at this stage, it is optimal for � to support all those agents x with
�Tu(�; x)¿0 and not to support any agent x with �Tu(�; x)¡0. Maximality
requires � to support all those agents with u(�; x) = 0 and therefore it follows
that ST (� | hT ) = {x | �Tu(�; x)¿ 0}= {x |VT (�; x)¿ 0}. Since this holds for
any history hT and any agent � the statement is true at the 7nal stage.

Now, let �¡T and let St(�) = {x |Vt(�; x)¿ 0} be the unique maximal
subgame perfect support behavior at stage t for all t¿ � and all histories ht .
Let h� be an arbitrary but 7xed history at the beginning of stage �. First, we
need some de7nitions and technical observations.

For all t¿ �; let the functions st : �×� → {0; 1} be de7ned by

st(�; x) =

{
1 if x∈ St(�);

0 otherwise:

Let 
t; t¿ �, be the unique in'uence distribution at stage t, given that
we start with history h� at stage � and given that agents act according to S
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at future stages. The evolution of 
t is given by


t(x) = 
t−1(x) + �(x) ·
∑

�∈�:x∈ St(�)


t−1(�)

= 
t−1(x) +
∑
�∈�

st(�; x)
t−1(�)�(x)

for all x∈�.
For a measure � on � and a function f : �×� → R let the measure Uf�

on � be given by

Uf�(x) =
∑
�

f(�; x)�(�)�(x)

for all x. Hence, by de7nition,


t =
t−1 + Ust
t−1 = (I + Ust)
t−1;

where I is the identity operator on measures.
Let f; g : �×� → R. We de7ne the function f̃g : �×� → R by

f̃g(�; x) =
∑
y

g(�;y)f(x;y)�(y):

Lemma 3.2. Let f; g : �×� → R and � a measure on �. Then; it holds
that

∑
x

g(�; x) Uf�(x) =
∑
x

f̃g(�; x)�(x):

The proof of this lemma can be found in the appendix.
Let Ut(�) =

∑
x u(�; x)
t(x) be the utility for agent � at stage t generated

by h� and the strategy pro7le S.

Lemma 3.3. For every t¿ � it holds that

Ut(�) =
∑
x

[
t∏

l = �

(I + s̃l)u

]
(�; x)
�−1(x):

Here, by
∏t

l = �(I + s̃l)u we mean the function obtained from u by succe-
sively applying the operators (I + s̃�); (I + s̃�+1); : : : ; (I + s̃t).

The proof of this lemma can be found in the appendix.
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Lemma 3.3 implies that
T∑

t = �

�tUt(�) =
∑
x

[
T∑

t = �

�t
t∏

l = �

(I + s̃l)u

]
(�; x)
�−1(x)

=
∑
x

[
(I + s̃�)(��u +

T∑
t = �+1

�t
t∏

l = �+1

(I + s̃l)u

]
(�; x)
�−1(x):

Let the function w� : �×� → R be given by

w�(�; x) =

[
��u +

T∑
t = �+1

�t
t∏

l = �+1

(I + s̃l)u

]
(�; x):

Hence
T∑

t = �

�tUt(�) =
∑
x

(I + s̃�)w�(�; x)
�−1(x)

=
∑
x

w�(�; x)
�−1(x) +
∑
x

s̃�w�(�; x)
�−1(x): (2)

By de7nition of s̃�w� we have∑
x

s̃�w�(�; x)
�−1(x) =
∑
x

∑
y

w�(�;y)s�(x;y)�(y)
�−1(x)

= 
�−1(�)
∑
y

w�(�;y)s�(�;y)�(y)

+
∑
x �= �

∑
y

w�(�;y)s�(x;y)�(y)
�−1(x): (3)

Since, by the induction assumption, S is history independent at stages t¿ �;
it follows that∑

x

w�(�; x)
�−1(x)

and ∑
x �= �

∑
y

w�(�;y)s�(x;y)�(y)
�−1(x)

do not depend on S�(�): Combining Eqs. (2) and (3) leads therefore to the
following conclusion.

Lemma 3.4. At stage � it holds that
T∑

t = �

�tUt(�) =C + 
�−1(�)
∑
y

w�(�;y)s�(�;y)�(y);

where C is an expression that does not depend on S�(�).
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It can be checked immediately that the functions wt : �×� → R (for
t¿ �) are given by the following recursive formula: wT (�; x) = �Tu(�; x) and

wt(�; x) = �tu(�; x) + wt+1(�; x) + s̃t+1wt+1(�; x): (4)

By de7nition

s̃t+1wt+1(�; x) =
∑
y

wt+1(�;y)st+1(x;y)�(y) =
∑

y∈ St+1(x)

wt+1(�;y)�(y)

=
∑

y:Vt+1(x;y)¿ 0

wt+1(�;y)�(y)

using the induction assumption that St+1(x) = {y |Vt+1(x;y)¿ 0}: Hence,

wT (�; x) = �Tu(�; x) =VT (�; x)

and

wt(�; x) = �tu(�; x) + wt+1(�; x) +
∑

y:Vt+1(x;y)¿ 0

wt+1(�;y)�(y)

for all t¿ �: This means that the functions wt; t¿ �, are given by the same
recursive formula as the marginal value functions Vt; t¿ �: However, this
implies that wt(�; x) =Vt(�; x) for all t¿ �.

Combining this result with Lemma 3.4 leads to the observation that the
continuation payo6 is equal to

T∑
t = �

�tUt(�) = C + 
�−1(�)
∑
y

V�(�;y)s�(�;y)�(y)

= C + 
�−1(�)
∑

y∈ S�(�)

V�(�;y)�(y) (5)

where C is an expression which does not depend on S�(�):
Since 
0(�)¿0 and 
t is non-decreasing over time, we have 
�−1(�)¿0:

As such, maximizing the continuation payo6 at stage � is a matter of choosing
S�(�) such that∑

y∈ S�(�)

V�(�;y)�(y)

is maximal. Since S is assumed to be a maximal subgame perfect equilibrium,
S�(�) = {x |V�(�; x)¿ 0}: This holds for any history h�; hence S�(� | h�) =
{x |V�(�; x)¿ 0} for all h�: This completes the proof of the theorem.

4. Limit behavior in continuum societies

One of the aims of this paper is to illustrate the phenomenon of post-
ponement or advancement of support for speci7c classes of problems, as a
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means to understand what features in the preferences of agents are crucial
in generating di6erent types of behavior. Yet, 7nding numerical examples, or
interesting classes of parametrized problems, is not an easy task. This task
could be facilitated if we could work with continuous variables; that is, if
we had a model with a continuum of agents over which other agents could
then have preferences, representable by continuous utility functions. The use
of models with a continuum of agents has a long tradition in economics
and political science (see, for instance, Schmeidler (1973); Aumann (1964)
among many others) and we would not elaborate much on it, were it is not
that, in our case, a simple extrapolation of concepts without some further
interpretation could be misleading. We shall work, indeed, with a continuum
of agents, each of which will have mass zero. Hence, as in standard models,
changes in the support behavior of a single agent will have no in'uence at
all on the overall outcome. Moreover, and this is a crucial di6erence with,
say, Aumann’s (1964) model of a competitive economy, any individual in the
continuum society will be indi6erent among all types of support behavior that
are available to him. This follows from the fact that support is the agent’s
only choice variable, and yet it does a6ect his utility. (This in contrast with
a consumer’s behavior in the continuum; he cannot a6ect prices, but still
derives di6erent utilities from di6erent consumption plans.)

Because of that, our model of a continuum society is no longer a game
in any proper sense, and equilibria for this model can hardly be justi7ed
per se. Instead, we use a continuum society as an approximation of large
discrete societies, and equilibrium behavior is de7ned in terms of the discrete
societies approximating the continuum. As we shall see, both the model and
the equilibrium notion proposed will prove to be useful and to provide a
well grounded method to construct examples which have direct bearing for
the understanding of discrete societies. To do that, we now discuss the model,
the equilibrium concept, and their relationships with large discrete societies.

4.1. Limit equilibria

Before stating the formal de7nition of our equilibrium concept, let us brie'y
sketch the idea. Our starting point is a society � with a continuum set of
agents �: For every n∈N we select a discrete set �n of representatives
from � such that �n becomes dense in �. To every �n; there corresponds
a discrete society �n obtained by taking the ‘projection’ of � on �n: A
strategy pro7le S in the continuum society � is called a limit equilibrium
if the sequence Sn of (unique) maximal subgame perfect equilibria in the
discrete games �(�n) converges to S:

In order to formalize the idea of approximating a continuum society by
a sequence of discrete societies, we need the following de7nitions. Let �=
(�; u; �; 
0) be a continuum society where (a) � is a non-atomic separable
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metric space, (b) u :�×� → R is continuous and (c) � and 
0 are strictly
positive measures on �. 5

A discrete grid on � is a pair (�̂; P) where �̂= {�1; �2; : : :} is a discrete
subset of � and P = {P1; P2; : : :} is a partition of � such that �k ∈Pk and
Pk contains a non-empty open subset for all k. The grid induces a discrete
society �̂= (�̂; û; �̂; 
̂0) where (a) the set of agents is �̂; (b) the utility
pro7le û : �̂×�̂ → R is the restriction of u on �̂×�̂; (c) �̂ is the measure
on �̂ given by �̂(�k) =�(Pk) for all �k ∈ �̂ and (d) 
̂0 is the measure on
�̂ with 
̂0(�k) =
0(Pk) for all �k ∈ �̂: 6 The discrete society �̂ is called the
discrete projection of � induced by the grid (�̂; P): We write �̂=�(�̂; P):

For a given discrete grid (�̂; P); let Uu : �×� → R be the step function
induced by u and (�̂; P); given by

u(�; x) = u(�k ; xl)

if �∈Pk and x∈Pl: Hence, Uu is the unique function on �×� which coin-
cides with u on �̂×�̂ and is constant on the induced partition elements of
�×�:

Let � be a continuum society and �n =�(�n; Pn) a sequence of discrete
projections with corresponding step functions Uu n: We say that �n converges
to � if (a) �n ⊂�n+1 for all n; (b) ∪n�n is dense in � and (c) Uu n converges
uniformly to u. 7

Let �n be a sequence of discrete projections converging to the continuum
society � and let Sn be the unique maximal subgame perfect equilibrium in
�(�n). It remains to de7ne the limit behavior in � induced by the sequence
Sn: A history independent 8 strategy pro7le in the continuum society � is a
pro7le S = (St(�))t6 T;�∈� where St(�)⊂� for all t and �: The limit behavior
induced by Sn is de7ned as the history independent strategy pro7le lim inf Sn

in � given by

lim inf Sn
t (�) =

{
x∈� | ∀n ∃ (� n; xn)∈�n×�n s:t: xn ∈ Sn

t (� n)

and lim
n→∞ (� n; xn) = (�; x)

}
:

5 A measure on a metric space is called strictly positive if it assigns strictly positive mass to
each non-empty, open subset.

6 The measures �̂ and 
̂0 are strictly positive since � and 
0 are assumed to be strictly positive
measures on � and all partition elements in P contain non-empty open subsets.

7 A sequence of functions fn :A → R is said to converge uniformly to f :A → R if for every
%¿0 there exists an N ∈N such that |f(x) − fn(x)|¡% for all n¿N and all x∈A:

8 We know, by Theorem 3.1, that the maximal subgame perfect equilibria Sn are all history
independent. Since we want to de7ne the limit behavior induced by Sn in �; it suKces to
restrict attention to history independent strategy pro7les in �.
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Intuitively, it means that � supports x in lim inf Sn if we can 7nd represen-
tatives � n and xn arbitrarily close to � and x such that xn is supported by
� n in some of the approximating equilibria. The de7nition of lim inf Sn

t (�) is
very close to the de7nition of the inner limit of a sequence of subsets of a
metric space, as used in Dantzig et al. (1967). 9

Now, we have all the ingredients to de7ne limit equilibria. A history in-
dependent strategy pro7le S in the continuum society � is called a limit
equilibrium if there is a sequence �n of discrete projections converging to �
and a sequence Sn of maximal subgame perfect equilibria in �(�n) such that
S is almost equal to lim inf Sn:

Here, two strategies pro7les S and US in � are said to be almost equal if for
every t and � the di6erence between the sets St(�) and USt(�) has �-measure
zero.

4.2. Almost uniqueness and characterization

In our theorem below, we prove the existence of a special limit equilibrium
S and show that every limit equilibrium is almost equal to S. The special
limit equilibrium S is characterized by marginal value functions Vt :�×� →
R given by the recursive formula

VT (�; x) = �Tu(�; x)

and

Vt(�; x) = �tu(�; x) + Vt+1(�; x) +
∫
y:Vt+1(x;y)¿ 0

Vt+1(�;y) d�(y)

for all t¡T: Hence, the marginal value functions Vt are the continuum ana-
logues of the marginal value functions in discrete societies.

In order to obtain our result, we impose two weak regularity conditions
on the continuum society � which are called the boundedness condition and
the indi6erence condition. The society � is said to satisfy the boundedness
condition if there is a number a¡0 and a number M¿0 such that

�({x∈� |Vt(�; x)¿ a})6M

for all t and �: We say that the game satis7es the indiEerence condition if

�({x∈� |Vt(�; x) = 0}) = 0

9 Let (An)n∈N be a sequence of subsets of some metric space X: Then, the inner limit of this
sequence is given by limn→∞ An = {x∈X | x= limn→∞ xn; where xn ∈An for all but a 7nite
number of n}:
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is satis7ed for all t and �. 10 In words, this means that the group of agents
x for which � is indi6erent always is neglectably small.

Theorem 4.1. Let � be a continuum society satisfying the boundedness con-
dition and the indiEerence condition. Let S be the history independent strat-
egy pro)le in � given by

St(�) = {x |Vt(�; x)¿ 0}
for all t and �: Then; S is a limit equilibrium and every limit equilibrium
is almost equal to S.

Proof. Let �n be a sequence of discrete projections converging to �; in-
duced by the discrete grids (�n; Pn): Let Sn be the corresponding sequence
of maximal subgame perfect equilibria. We de7ne the history independent
strategy pro7le US in � by US = lim inf Sn: We proceed in three steps. First, we
prove that the corresponding sequence of marginal value functions Vn

t of the
discrete approximating societies converges to the marginal value function Vt

in �. Secondly, it is shown that US is almost equal to the strategy pro7le S
de7ned in the theorem, implying that S is a limit equilibrium. Finally, we
prove that every limit equilibrium is almost equal to S.

Step 1: Convergence of discrete marginal value functions to continuum
marginal value functions. Let �n be the discrete projection generated by the
discrete grid (�n; Pn): For every n and every t let Vn

t :�n×�n → R be the
marginal value function at stage t in the discrete society �n; as de7ned in
the previous section: We de7ne the step functions UV

n
t :�×� → R by

UV
n
t (�; x) =Vn

t (�k ; xl);

where �k ; xl ∈�n are in the same Pn-partition element as � and x, respectively.

Lemma 4.2. For every t; the sequence of functions UV
n
t converges uniformly

to Vt:

Proof. We proceed by induction on t. For every n let Uu n :�×� → R be
the step function generated by u and (�n; Pn); as de7ned above: Since �n

converges to �; the sequence Uu n converges uniformly to u; by de7nition.
If t =T; then Vn

T = �Tun and hence UV
n
T = �T Uu n: Using the fact that Uu n con-

verges uniformly to u and VT = �Tu leads to the conclusion that UV
n
T converges

uniformly to VT :

10 This condition is typically satis7ed if � is an Euclidean space, � is measurable with respect
to the Lebesgue measure and u is such that {x | u(�; x) = 0} is a countable set for all �. Since
this is the standard framework we are thinking of, the indi6erence condition does hardly impose
any restrictions.



S. Barber�a, A. Perea /Journal of Economic Dynamics & Control 26 (2002) 2051–2092 2071

Now, let t¡T: Let n be 7xed, (�; x) an arbitrary point in �×� and
(�k ; xl)∈�n×�n such that � and x are in the same Pn-partition set as �k
and xl, respectively. Let un be the utility pro7le and �n the support sensitiv-
ity measure in �n: Then, by de7nition

UV
n
t (�; x) = Vn

t (�k ; xl)

= �tun(�k ; xl) + Vn
t+1(�k ; xl)

+
∑

yn ∈�n : Vn
t+1(xl;yn)¿ 0

Vn
t+1(�k ;yn) · �n(yn):

Since �n is the ‘contraction’ of � on �n induced by Pn and UV
n
t+1 is the step

function on �×� which is constant on Pn-partition elements and coincides
with Vn

t+1 on �n×�n; it follows that

UV
n
t (�; x) = �tun(�k ; xl) +Vn

t+1(�k ; xl) +
∫
y∈� : UVn

t+1(x;y)¿0

UV
n
t+1(�;y) d�(y)

= �tu n(�; x) + UV
n
t+1(�; x) +

∫
y∈�

UV
n
t+1(�;y)snt+1(x;y) d�(y);

(6)

where snt+1 : �×� → {0; 1} is the function de7ned by

snt+1(x;y) =

{
1 if UV

n
t+1(x;y)¿ 0;

0 otherwise:

In the last equation, we used the de7nitions of Uu n and UV
n
t+1: Using the

recursive formula for Vt we have

Vt(�; x) = �tu(�; x) + Vt+1(�; x) +
∫
y∈�

Vt+1(�;y)st+1(x;y) d�(y);

where

st+1(x;y) =

{
1 if Vt+1(x;y)¿ 0;

0 otherwise:
(7)

By combining Eqs. (6) and (7) we obtain that

| UV
n
t (�; x) − Vt(�; x)|
6 �t |u n(�; x) − u(�; x)| + | UV

n
t+1(�; x) − Vt+1(�; x)|

+
∫
y
| UV

n
t+1(�;y)snt+1(x;y) − Vt+1(�;y)st+1(x;y) | d�(y): (8)
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Let %¿0 be given. We show that there is an N such that | UV
n
t (�; x)−Vt(�; x)|¡%

for all n¿N and all (�; x) in �×�:
Let the three terms on the right-hand side of (8) be denoted by An(�; x);

Bn(�; x) and Cn(�; x): Since Uu n converges uniformly to u we can 7nd N1 ∈N
such that An(�; x)¡%=3 for all n¿N1 and all (�; x): Using the induction
assumption that UV

n
t+1 converges uniformly to Vt+1 it follows that there is

an N2 such that Bn(�; x)¡%=3 for all n¿N2 and all (�; x): It remains to
show that we can 7nd N3 such that Cn(�; x)¡%=3 for all n¿N3 and all
(�; x):

By the boundedness condition, there is a¡0 and an M¿0 such that
�({x |Vt+1(�; x)¿ a})6M for all �: Choose b¿0 such that b¡min{%=
27M;−a}: Then the term Cn(�; x) can be written as the sum

Cn(�; x) =
∫
y:Vt+1(x;y)6−b

| UV
n
t+1(�;y)snt+1(x;y)

−Vt+1(�;y)st+1(x;y)| d�(y)

+
∫
y:−b¡Vt+1(x;y)¡b

| UV
n
t+1(�;y)snt+1(x;y)

−Vt+1(�;y)st+1(x;y)| d�(y)

+
∫
y:Vt+1(x;y)¿ b

| UV
n
t+1(�;y)snt+1(x;y)

−Vt+1(�;y)st+1(x;y)| d�(y):

Let the three terms on the right-hand side be denoted by Cn
1 (�; x); Cn

2 (�; x)
and Cn

3 (�; x), respectively. We show that for i= 1; 2; 3; the term Cn
i (�; x)¡%=9

for all (�; x) if n is large enough.
We start with Cn

1 (�; x): Since UV
n
t+1 converges uniformly to Vt+1, there exists

N3 such that | UV
n
t+1(x;y)−Vt+1(x;y)|¡b=2 for all n¿N3 and all (x;y): Since

we integrate only over y’s with Vt+1(x;y)6−b; it follows that UV
n
t+1(x;y)¡0

for all y’s over which we integrate. This implies that snt+1(x;y) = st+1(x;y) = 0
for all y in the integral and hence Cn

1 (�; x) = 0 for all n¿N3 and all
(�; x):

The term Cn
2 (�; x) is bounded by

Cn
2 (�; x) 6

∫
y:−b¡Vt+1(x;y)¡b

| UV
n
t+1(�;y)snt+1(x;y)| d�(y);

+
∫
y:−b¡Vt+1(x;y)¡b

|Vt+1(�;y)st+1(x;y)| d�(y):

Since UV
n
t+1 converges uniformly to Vt+1 we can 7nd N4 such that | UV

n
t+1(�;y)−

Vt+1(�;y)|¡b for all n¿N4 and all (�;y): Then, | UV
n
t+1(�;y)|¡2b for all y



S. Barber�a, A. Perea /Journal of Economic Dynamics & Control 26 (2002) 2051–2092 2073

over which we integrate and hence, for all n¿N4 and all (�; x);

Cn
2 (�; x) 6

∫
y:−b¡Vt+1(x;y)¡b

2b d�(y) +
∫
y:−b¡Vt+1(x;y)¡b

b d�(y)

= 3b · �({y| − b¡Vt+1(x;y)¡b}):

Since, by assumption, b¡− a (we refer to the constant a¡0 of the bound-
edness condition), we have that −b¿a and therefore

{y | − b¡Vt+1(x;y)¡b}⊂{y |Vt+1(x;y)¿ a}
and hence, for all n¿N4 and all (�; x);

Cn
2 (�; x)6 3b · �({y |Vt+1(x;y)¿ a})6 3b ·M

by the boundedness condition. Since, by assumption, b¡%=27M it follows
that Cn

2 (�; x)¡%=9 for all n¿N4 and all (�; x):
The term Cn

3 (�; x) is given by

Cn
3 (�; x) =

∫
y:Vt+1 (x;y)¿ b

| UV
n
t+1(�;y)snt+1(x;y)

−Vt+1(�;y)st+1(x;y) | d�(y):

Let c¿0 be such that c¡min{b=2; %=9M}: Since UV
n
t+1 converges uniformly

to Vt+1; we can 7nd N5 such that | UV
n
t+1(x;y) − Vt+1(x;y)|¡c for all n¿N5

and all (x;y): Then, since c6 b=2; V t+1
n (x;y)¿0 for all y over which we

integrate if n¿N5: Hence, for all n¿N5; snt+1(x;y) = st+1(x;y) = 1 for all y
over which we integrate. Therefore, for all n¿N5 and all (�; x);

Cn
3 (�; x) =

∫
y:Vt+1(x;y)¿ b

| UV
n
t+1(�;y) − Vt+1(�;y)| d�(y)

6
∫
y:Vt+1(x;y)¿ b

c d�(y) = c · �({y |Vt+1(x;y)¿ b}

6 c · �({y |Vt+1(x;y)¿ a})6 c ·M¡
%
9

since c¡%=9M:
Now, let N = max{N1; : : : ; N5}: Then, for all n¿N and all (�; x) we have

that

| UV
n
t (�; x) − Vt(�; x)| 6 An(�; x) + Bn(�; x) + Cn

1 (�; x)

+Cn
2 (�; x) + Cn

3 (�; x)¡%:

This completes the proof of the lemma.

This lemma implies that the marginal value functions Vn
t :�n×�n → R

converge pointwise to Vt :�×� → R: Stated formally, we obtain the follow-
ing result.
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Lemma 4.3. If the sequence (� n; xn)∈�n×�n is such that limn→∞ (� n; xn) =
(�; x); then limn→∞ Vn

t (� n; xn) =Vt(�; x):

Proof. For all n we have that

|Vn
t (� n; xn) − Vt(�; x)| = | UV

n
t (�

n; xn) − Vt(�; x)|
6 | UV

n
t (�

n; xn) − Vt(� n; xn)|
+ |Vt(� n; xn) − Vt(�; x)|:

Let %¿0 be given. Since Vn
t converges uniformly to Vt and Vt is contin-

uous, there is N such that | UV
n
t (�

n; xn) − Vt(� n; xn)|¡%=2 and |Vt(� n; xn) −
Vt(�; x)|¡%=2 for all n¿N: Hence, |Vn

t (� n; xn) − Vt(�; x)|¡% for all n¿N
which implies that limn→∞ Vn

t (� n; xn) =Vt(�; x).

Step 2: S is a limit equilibrium. By Theorem 3.1, we know that �(�n)
has a unique maximal subgame perfect equilibrium Sn characterized by the
marginal value functions Vn

t : Hence, by de7nition, US = lim inf Sn; where Sn

is given by

Sn
t (� n) = {xn ∈�n |Vn

t (� n; xn)¿ 0}
for all t and all � n ∈�n: Now, we show that US is almost equal to the strategy
pro7le S in � given by

St(�) = {x∈� |Vt(�; x)¿ 0}
for all t and all �∈�:

Let t and �∈� be given. First, we prove that USt(�)⊂ St(�): Let x∈ USt(�):
Since US = lim inf Sn; there is a sequence (� n; xn)∈�n×�n converging to
(�; x) such that xn ∈ Sn

t (� n) for all n. Hence, Vn
t (� n; xn)¿ 0 for all n. Since

Vn
t converges pointwise to Vt it follows that Vt(�; x)¿ 0 and hence x∈ St(�):
Now, we show that St(�) \ USt(�) has �-measure zero. Let x∈ St(�); hence

Vt(�; x)¿ 0:
Suppose that Vt(�; x)¿0: Then, since Vn

t converges pointwise to Vt; there is
a sequence (� n; xn)∈�n×�n converging to (�; x) such that Vn

t (� n; xn)¿0 for
all n. Hence, xn ∈ Sn

t (� n) for all n which implies that x∈ lim inf Sn = US: There-
fore, St(�) \ USt(�)⊂{x∈� |Vt(�; x) = 0}: But, by the indi6erence condition,
�({x∈� |Vt(�; x) = 0}) = 0; which implies that St(�) \ USt(�) has �-measure
zero. Given this fact, we may conclude that USt(�) is almost equal to St(�)
for all t and all �: This completes the proof of the fact that S is a limit
equilibrium.

Step 3: Every limit equilibrium is almost equal to S. Let US be an arbitrary
limit equilibrium. Then, by de7nition, there is a sequence �n of discrete
projections converging to � and a sequence Sn of corresponding maximal
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subgame perfect equilibria such that US is almost equal to lim inf Sn: In part
(a) of the proof, we have shown that the special limit equilibrium S is almost
equal to lim inf Sn; irrespective of the approximating sequence �n we choose.
As a consequence, US is almost equal to S; which completes the proof of the
theorem.

5. Single peaked preferences on the real line

In this section, we apply the characterization of optimal support behavior
in continuum societies, as presented in the previous section. Although we
provide examples of continuum models, the reader should bear in mind that
the qualitative features stressed in the examples will be shared by models
of 7nite but large enough societies along the sequences converging to the
limiting examples.

We focus on a group of agents which is represented by the real line. 11 A
possible interpretation is that agents are ordered according to some parameter
which can be viewed as the agent’s type. Agents which are close to each
other on the line are similar whereas agents separated by a large distance are
very di6erent. In many situations, agents prefer types similar to their own.
This can be modeled by single peaked preferences: for each agent �; the
individual utility function u(�; ·) : R → R has a maximum at � and utility
decreases if the agent’s type is further away from �:

As will become clear in the sections to come, the agents’ support behavior
depends crucially on the shape of the individual utility curves. It is important
to know how utility changes if we move further away from the most preferred
type. One possibility is that utility decreases faster if we are further away
from the peak, meaning that individual utility functions are concave. This
re'ects situations where agents have strong preferences for similar types and
strong ‘objections’ against very di6erent types. This section is devoted to
this particular class of preferences. We show that, under some symmetry
conditions de7ned below, concave preferences induce support behavior in
which agents always support subsets of their friends. Recall that an agent
x is called �’s friend if u(�; x)¿ 0: Agents with concave preferences have
therefore no incentives to support members with negative utility since this
would lead to a decrease of their future utility. Before deriving the result, we
specify the setting and introduce the symmetry assumptions.

Consider the continuum society �=R: We assume that � is the Lebesgue-
measure on R. Instead of d�(y) we write dy. We say that the utility pro7le
u :�×� → R is strictly concave if the individual utility functions u(�; ·) :

11 We choose the real line instead of a bounded interval for the sake of symmetry. Bounded
intervals have the technical disadvantage that boundary e6ects have to be taken into account.
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R→ R are strictly concave for all �: The utility pro7le u is called anonymous
if u(�; x) = u(�+a; x+a) for all �; x; a: In words, this means that every agent
has the same utility function, up to translation. We say that u is diagonally
symmetric if u(�; � + a) = u(�; � − a) for all �; a: Note that strict concavity
and diagonal symmetry imply that u(�; ·) has a single peak at �.

Theorem 5.1. Let u be strictly concave; anonymous and diagonally sym-
metric and let �T¿0: Then; the limit equilibrium S of Theorem 4:1 is the
almost unique limit equilibrium and S is such that agents will always sup-
port a subset of their friends. If; moreover; �t = 0 for all t¡T; then the
group St(�) of agents supported by � increases monotonically over time for
every �:

Our conjecture is that monotonicity of support also holds if �t¿0 for t¡T .
However, we did not manage to 7nd a proof yet.

The proof of this theorem can be found in the appendix.
The theorem above states that agents with concave, anonymous and di-

agonally symmetric preferences have no incentives to support enemies. The
recursive formula for the marginal value functions Vt has been applied to
derive this qualitative result. In the remainder of this section, we exploit this
recursive formula to explicitly compute the support behavior for two special
classes of concave preferences, namely quadratic and exponential preferences.
It turns out that in both cases the group supported by a particular agent in-
creases monotonically over time: a result which strengthens our conjecture
stated directly after the theorem. Moreover, the group supported by � in-
creases faster as time evolves.

Next, we turn to normal preferences as an example of non-concave prefer-
ences. In contrast to the previous results, now agents will support enemies at
all but the last stage and the group supported by an agent decreases mono-
tonically over time.

Throughout the remainder of this section, we assume that � is the real
line, �t = 1 for all t and � is the Lebesgue measure.

5.1. Quadratic preferences

Assume that the utility pro7le u is given by

u(�; x) = − (x − (�− 1))(x − (� + 1)):

Hence, u(�; ·) has a maximum at � and roots at �− 1 and � + 1: Obviously,
u is strictly concave, anonymous and diagonally symmetric and Theorem 5.1
assures that there is an almost unique limit equilibrium S in which agents will
never support enemies. Using the recursive formula for the marginal value
functions, we are able to prove that all marginal value functions are quadratic
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Fig. 1. Evolution of support with quadratic preferences.

functions of the form

Vt(�; x) = − at(x − (�− bt))(x − (� + bt));

where the coeKcients at; bt are given by the recursive equation

aT = 1; bT = 1;

at = 2at+1bt+1 + 1 + at+1;

bt =

√
4at+1(bt+1)3 + 3 + 3at+1(bt+1)2

6at+1bt+1 + 3 + 3at+1
: (9)

Here, the coeKcients at and bt do not depend on �:
In the limit equilibrium S agent � supports the interval [� − bt; � + bt]

at stage t: Hence, determining the limit equilibrium S is simply a matter of
computing the parameters bt given by the recursive formula (9). Exploiting
the formula, it can be shown that bt is strictly increasing over time and hence
the group of agents supported by � monotonically increases over time for all
�. If the number of stages T is large and t is small

bt ≈ bt+1

√
4bt+1 + 3
6bt+1 + 3

:

The last property follows from formula (9) and the observation that at
tends to in7nity if T − t is very large. It implies that bt tends to zero if T − t
is very large. Intuitively, this means that if many stages are involved, agents
support only very small groups at the beginning. The following Fig. 1 shows
the evolution of bt in a game with 15 stages.
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Fig. 2. Evolution of support with exponential preferences.

5.2. Exponential preferences

Assume that the utility pro7le u has the form

u(�; x) = e +
1
e
− ex−� − e�−x:

The function u(�; ·) has a maximum at � and roots at �−1 and �+1: Again,
u is concave, anonymous and diagonally symmetric and hence Theorem 5.1
applies. Using the recursive formula for the marginal value functions, it can
be shown that all marginal value functions are exponential functions of the
form

Vt(�; x) = at − bt(ex−� + e�−x);

where at and bt are parameters which do not depend on �: The limit equilib-
rium S is such that at every stage t agent � supports St(�) = [� − ct ; � + ct]
with ct being independent of �: The numbers at; bt and ct are given by the
recursive equation

aT = e +
1
e
; bT = 1; cT = 1;

at = e +
1
e

+ at+1 + 2at+1ct+1;

bt = 1 + bt+1 + bt+1(ect+1 − e−ct+1);

ct = arccosh
(

at
2bt

)
: (10)

Computing the limit equilibrium S is therefore equivalent to calculating the
parameters ct given by the recursive formula above. The following Fig. 2
shows the evolution of ct over time in a game with 15 stages.
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Fig. 3. Evolution of marginal value function with normal preferences.

Similar to the case with quadratic preferences, the group supported by
agent � strictly increases over time and the rate of increase grows as time
evolves.

5.3. Normal preferences

Assume that the utility pro7le u is given by

u(�; x) = e−(x−�)2 − 1
e
:

The function u(�; ·) has a maximum at � and roots at �−1 and �+1: Hence,
u is diagonally symmetric and anonymous but not concave. Unfortunately,
the marginal value functions Vt cannot be written in the form

Vt(�; x) = ae−(x−�)2 − b

and can therefore not be parametrized as has been the case with quadratic
and exponential preferences. This complicates our attempt to undertake sim-
ulations with many stages, since the computer package has to calculate the
complete marginal value function at each stage. A simulation with four stages
shows that the curves of the individual marginal value functions Vt(�; ·) are
very close to normal. Fig. 3 show the curves of Vt(0; ·) at stages 1; 2 and 3,
respectively. Since u is diagonally symmetric and anonymous, the proof of
Theorem 5.1 assures that the marginal value function Vt is anonymous and
therefore every individual marginal value function Vt(�; ·) is equal to Vt(0; ·)
after translation.

Since the boundedness condition and the indi6erence condition are clearly
satis7ed, the marginal value functions characterize an almost unique limit
equilibrium S. As can be seen in the 7gure, the group supported by agent �
in S contains enemies at all but the last stage and decreases over time. More
exactly, the limit equilibrium is such that agent � at stage t supports the set
St(�) = [� − at; � + at] where at does not depend on � and is given by the
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following table:

t 1 2 3 4

at 1.15 1.11 1.06 1.00

6. Stationary support

In Section 5 we have seen that quadratic and exponential preferences lead
to increasing support over time, whereas normal preferences induce decreasing
support as time evolves. These results raise the question whether we can 7nd
circumstances under which support remains constant over time. In this section
we provide a suKcient condition for stationary support behavior and illustrate
the result with an example.

A utility pro7le u in a continuum society is said to induce stationary
support if the limit equilibrium S (by which we mean the limit equilibrium
in Theorem 4.1) is such that for every � the set St(�) remains constant
over time. In the theorem we present a suKcient condition on u to induce
stationary support. To this purpose, we de7ne the operator A transforming a
function f : �×� → R into the function Af : �×� → R given by

Af(�; x) =
∫
y:f(x;y)¿ 0

f(�;y) d�(y):

Theorem 6.1. Let �t¿0 for all t and let the utility pro)le u be such that
Au= /u for some constant /¿0: Then; u induces stationary support.

Proof. Let u be such that Au= /u for some constant /¿0: Let S be the limit
equilibrium and Vt the corresponding marginal value functions. By de7nition,
we have VT = �Tu and Vt = �tu + Vt+1 + AVt+1 for all t¡T: In particular,

VT−1 = �T−1u + VT + AVT = �T−1u + �Tu + A�Tu

= �T−1u + �Tu + �TAu= (�T−1 + �T + �T/)u:

By induction, it follows that Vt is always a strictly positive multiple of u: Con-
sequently, St(�) = {x |Vt(�; x)¿ 0}= {x | u(�; x)¿ 0} for all t which means
that u induces stationary support.

Example 6.1. Let � be the circle with unit length. For the sake of conve-
nience, we represent � by the interval [0; 1]: Let �t¿0 for all t and � be
the Lebesgue-measure on [0; 1]: Let the utility pro7le u be given by

u(�; x) = cos(2
(x − �))
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for all �; x∈�: Hence, u(�; ·) has a maximum at � and decreases as we
go further away from � on the circle. We show that u induces stationary
support.

For every x∈R let [x] be the unique number in [0; 1) such that x− [x]∈Z:
Then {y | u(x;y)¿ 0}= {[y] |y∈ [x − 1

4 ; x + 1
4]} and

Au(�; x) =
∫ x+1=4

x−1=4
u(�; [y]) dy=

∫ x+1=4

x−1=4
cos(2
([y] − �)) dy

=
∫ x+1=4

x−1=4
cos(2
(y − �)) dy

=
1

2

sin

(
2


(
x +

1
4
− �

))
− 1

2

sin

(
2


(
x − 1

4
− �

))

=
1



cos(2
(x − �)) =
1


u(�; x):

Hence, Au= 1=
 u and Theorem 6.1 assures that u induces stationary
support.

In the case where � is the real line; we did not yet manage to 7nd an
interesting utility pro7le u which induces stationary support. Trivial but un-
appealing utility pro7les that induce stationary support are, for instance, those
in which each agent � dislikes all other agents (i.e. u(�; x)¡0 for all x). In
this case, � will always support nobody. An open question is still whether
there exists a utility pro7le u : R×R → R inducing stationary support and
satisfying the following properties: (a) u is anonymous and diagonally sym-
metric, (b) u(�; ·) is positive at [� − a; � + a] and negative outside for some
a¿0:

7. In%nite horizon

Up to this point, we assumed that agents face a 7nite horizon, which is
commonly known to all. In some cases, however, this assumption may not
be appropriate. It is therefore worthwhile analyzing the case of an in7nite
(or uncertain) horizon. As will be shown in this section, the introduction of
an in7nite horizon induces a remarkable change in optimal support behav-
ior: a phenomenon which is not surprising, given the important di6erence
between a 7nite and an in7nite horizon in the literature on repeated games.
In general, uniqueness of subgame perfect equilibrium is lost when facing an
in7nite horizon and history dependent equilibria may arise. Before turning to
history dependent equilibria, we 7rst analyze the class of history independent
equilibria.
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7.1. History independent equilibria

It turns out that, even when concentrating on history independent equilib-
ria, the situation drastically changes when switching to an in7nite horizon.
As we will see, multiple history independent equilibria, and even multiple
stationary equilibria may exist. Similar to the 7nite horizon case, they can be
characterized by marginal value functions.

In the sequel, we solely concentrate on discrete societies but similar ar-
guments would hold when considering continuum societies. First, we try to
characterize maximal subgame perfect equilibria with in7nite horizon by using
marginal value functions. Consider a history independent maximal subgame
perfect equilibrium S for the 7nite horizon case, so S = (St(�))t6 T;�∈�: In
the proof of Theorem 3.1, we have seen that the marginal value functions Vt

are given by

Vt(�; x) =

[
�tu +

T∑
� = t+1

��
�∏

l = t+1

(I + s̃l)u

]
(�; x);

where the operator s̃l transforms a function f : �×� → R into a function
s̃lf : �×� → R given by

s̃lf(�; x) =
∑

y∈ Sl(x)

f(�;y)�(y):

Now, let S be a history independent strategy pro7le for the in7nite horizon
case, so S = (St(�))t ∈N; �∈�: In the same way as above, we may de7ne the
marginal value functions Vt; t ∈N; induced by S by

Vt(�; x) =

[
�tu +

∞∑
� = t+1

��
�∏

l = t+1

(I + s̃l)u

]
(�; x);

given that this expression exists. By essentially copying the proof of Theorem
3.1 we obtain the following characterization of history independent equilibria
with in7nite horizon.

Theorem 7.1. Let S be a history independent strategy pro)le for the in)-
nite horizon case. Suppose that S is such that the marginal value functions
(Vt)t ∈N induced by S exist. Then; S is a maximal subgame perfect equilib-
rium if and only if St(�) = {x |Vt(�; x)¿ 0} for all t:

A disadvantage, in comparison with the 7nite horizon case, is that the
marginal value functions can no longer be computed recursively by backward
induction, since there is no longer a 7nal stage. Determining the marginal
value functions and verifying the condition of the theorem above can therefore
become a complicated matter.
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The theorem can be used, however, to provide a suKcient condition for
stationary equilibria, similar to the one presented in Theorem 6.1 for a 7nite
horizon. Let A be the operator transforming a utility pro7le u : �×� → R
into a new function Au : �×� → R given by

Au(�; x) =
∑

y:u(x;y)¿ 0

u(�;y)�(y):

Theorem 7.2. Let Au= /u for some number /¿0: Then; the stationary
strategy pro)le S in which at every stage; after any history; agent � supports
S(�) = {x | u(�; x)¿ 0} is a maximal subgame perfect equilibrium.

Proof. Suppose that Au= /u for some /¿0: Let the stationary strategy pro7le
S be given by St(�) = {x | u(�; x)¿ 0} for all t; �. Then, by construction,
s̃lu=Au= /u for all l∈N and the marginal value functions induced by the
stationary strategy pro7le S are given by

Vt(�; x) =

[
�tu +

∞∑
� = t+1

��
�∏

l = t+1

(I + s̃l)u

]
(�; x)

=

[
�tu +

∞∑
� = t+1

��
�∏

l = t+1

(I + A)u

]
(�; x)

=

[
�tu +

∞∑
� = t+1

��
�∏

l = t+1

(1 + /)u

]
(�; x)

=

[
�t +

∞∑
� = t+1

��(1 + /)�−t

]
u(�; x)

so Vt is a strictly positive multiple of u for all t: Hence, St(�) = {x | u(�; x)¿
0}= {x |Vt(�; x)¿ 0} for all t and �: Theorem 7.1 assures that S is a maximal
subgame perfect equilibrium.

The condition of the theorem above, however, is not necessary for station-
ary equilibria. In the following example, we are able to 7nd two stationary
equilibria: one which satis7es the suKcient condition and one which does
not. As a byproduct, the example shows that there may exist multiple history
independent equilibria (even multiple stationary equilibria) if the horizon is
in7nite.
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Example 7.1. Consider a group �= {1; 2} of agents for which the utilities
u(�; x) are given by the matrix

2 −1

−1 2

We assume that �(�) = 1 for both � and �t = �t with �= 0:3: Here, the dis-
count factor � is small enough as to ensure the existence of the marginal
value functions for any strategy pro7le. Let S be the stationary strategy pro-
7le in which 1 always supports {1} and 2 always supports {2} at any stage
and after any history. Let S ′ be the stationary strategy pro7le in which both
1 and 2 always support {1; 2}: We show that both S and S ′ are maximal
subgame perfect equilibria.

It can be checked immediately that Au= u; so Theorem 7.2 implies that S
is a maximal subgame perfect equilibrium.

Now, let s̃′l ≡ s̃′ be the operator at stage l induced by S ′; as used in the
de7nition of the marginal value functions above. Then, the marginal value
function Vt is given by

Vt(�; x) =

[
�tu +

∞∑
� = t+1

��
�∏

l = t+1

(I + s̃′)u

]
(�; x)

=

[
�tu +

∞∑
� = t+1

��(I + s̃′)�−tu

]
(�; x):

By straightforward calculations, it can be shown that Vt(�; x)¿0 for all (�; x);
and hence S ′

t (�) = {1; 2}= {x |Vt(�; x)¿ 0} for all t and �: Theorem 7.1 guar-
antees therefore that S ′ is a maximal subgame perfect equilibrium.

The intuition behind the equilibrium S ′ is the following: it is in agent �’s
interest to support the other agent x, since x will support � in all remaining
stages. So, by supporting x; agent � is implicitly supporting himself.

This equilibrium would break down if the horizon would be 7nite, since
agents would only support themselves at the last stage, which makes it
unattractive to support the other agent at the penultimate stage, which makes
it unattractive to support the other agent at the stage before the penultimate
stage and so on.

7.2. History dependent equilibria

If the agents face a 7nite horizon, the unique maximal subgame perfect
equilibrium is history independent. By means of an example, we show that
an in7nite horizon may lead to history dependent equilibria.
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Example 7.2. As in Example 7.1, consider a group �= {1; 2} of agents in
which the utilities u(�; x) are given by

2 −1

−1 2

Again, �(�) = 1 for both agents and �t = �t with �= 0:3: Let S be the history
dependent strategy pro7le de7ned as follows:
Stage 1: Both agents support {1; 2}:
Stage t¿1: If at all previous stages, both agents supported {1; 2}; then

both agents continue to support {1; 2}:
If at some previous stage, an agent did not support {1; 2}; agent 1 supports

{1} and agent 2 supports {2}:

We prove that S is a maximal subgame perfect equilibrium.
By symmetry of the game, it is suKcient to concentrate on agent 1’s

deviations. Suppose the game is at stage t and both agents supported {1; 2} at
all previous stages. Let the in'uence distribution at the beginning of stage t be
given by 
t−1 = (
t−1(1); 
t−1(2)); where 
t−1(�) denotes agent �’s in'uence.

If agent 1 deviates at stage t, then agent 2 will support {2} ever after. In
Example 7.1 we have seen that both agents supporting only themselves is
a maximal subgame perfect equilibrium (irrespective of the initial in'uence
distribution). In particular, this means that if agent 2 supports {2} ever after,
the best for agent 1 to do is to support {1} ever after. Using the recursive
formula for the evolution of the in'uence distribution, as given in Section 2,
it can be shown that the overall continuation utility for agent 1 by deviating
at stage t, is less or equal to

U ′
1 =

4�t

1 − 2�

t−1(1) +

[
2�t

1 − �
− 2�t

1 − 2�

]

t−1(2):

Assume on the other hand that agent 1 sticks to the strategy prescribed by
S. Then, his overall continuation utility, starting at stage t, is equal to

U1 =
[

3
2

�t

1 − �
+

3
2

�t

1 − 3�

]

t−1(1) +

[
−3

2
�t

1 − �
+

3
2

�t

1 − 3�

]

t−1(2):

It can be checked that U ′
1¡U1 for �= 0:3 and for all t, so deviation is not

bene7cial.
Now, suppose that the game is at stage t and some agent did not support

{1; 2} at some of the previous stages. Then, S prescribes that both agents
should support only themselves in all remaining stages. In Example 7.1, we
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have seen that both agents supporting only themselves is a maximal subgame
perfect equilibrium, which implies that deviation is not bene7cial for agent
1 at this stage of the game. Hence, we may conclude that S is a maximal
subgame perfect equilibrium.

8. Concluding remarks

Our main contributions in this paper are threefold. First, we propose a
general game theoretical model to study situations in which agents pertain-
ing to a society can transfer in'uence to other members by supporting them.
We continue by showing that for discrete and continuum societies there is
an essentially unique optimal support behavior if there is a 7nite horizon.
Here, continuum societies should be seen as approximations of large discrete
societies. Moreover, we present an easy to handle recursive formula which
characterizes the equilibrium. This formula is used to make qualitative state-
ments on the support behavior of agents and to compute the equilibrium for
speci7c utility classes.

The model presented can be extended in many di6erent directions. One
could, for instance, consider the situation in which agents cannot support ar-
bitrary groups of agents but face physical or 7nancial restrictions. The model
could also be extended to societies where the utilities u(�; x); re'ecting the
preferences for other society members, are not 7xed but change over time.
Or one could look at situations with continuous instead of discrete time. The
techniques used to derive our results can probably be adapted to continuous
time in the same way as related techniques in discrete dynamic programming
have been adapted to continuous programming.
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Appendix A.

A.1. Proof of Lemma 3.2

By de7nition of Uf� we have
Uf�(x) =

∑
y

f(y; x)�(y)�(x)
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and hence∑
x

g(�; x) Uf�(x) =
∑
x

∑
y

g(�; x)f(y; x)�(y)�(x)

=
∑
x

[∑
y

g(�;y)f(x;y)�(y)

]
�(x)

=
∑
x

f̃g(�; x)�(x);

where the second equality is obtained by exchanging x and y.

A.2. Proof of Lemma 3.3

By induction on t − �:
If t = �; then we have

Ut(�) =
∑
x

u(�; x)
�(x) =
∑
x

u(�; x)(
�−1 + Us�
�−1)(x)

=
∑
x

u(�; x)
�−1(x) +
∑
x

u(�; x) Us�
�−1(x)

=
∑
x

u(�; x)
�−1(x) +
∑
x

s̃�u(�; x)
�−1(x)

=
∑
x

(I + s̃�)u(�; x)
�−1(x);

where the fourth equality follows from Lemma 3.2.
Now, let t¿� and let the statement be true for all �′¡t′ with t′−�′¡t−�:

Then, in particular, the statement is true for t and � + 1 which means that

Ut(�) =
∑
x

[
t∏

l = �+1

(I + s̃l)u

]
(�; x)
�(x)

=
∑
x

[
t∏

l = �+1

(I + s̃l)u

]
(�; x)(
�−1 + Us�
�−1)(x)

=
∑
x

[
t∏

l = �+1

(I + s̃l)u

]
(�; x)
�−1(x)

+
∑
x

[
t∏

l = �+1

(I + s̃l)u

]
(�; x) Us�
�−1(x)
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=
∑
x

[
t∏

l = �+1

(I + s̃l)u

]
(�; x)
�−1(x)

+
∑
x

[
s̃�

t∏
l = �+1

(I + s̃l)u

]
(�; x)
�−1(x)

=
∑
x

[
(I + s̃�)

t∏
l = �+1

(I + s̃l)u

]
(�; x)
�−1(x)

=
∑
x

[
t∏

l = �

(I + s̃l)u

]
(�; x)
�−1(x);

where the fourth equality follows from Lemma 3.2.

Proof of Theorem 5.1 (a) First of all, we show that the marginal value
functions Vt are strictly concave, anonymous and diagonally symmetric for
all t: We prove the statement by induction on t.

If t =T the statement is true since VT = �Tu and �T¿0: Now let t¡T and
let the statement be true for all �¿t: First we show anonimity of Vt: Since

Vt(�; x) = �tu(�; x) + Vt+1(�; x) +
∫
y: Vt+1(x;y)¿ 0

Vt+1(�;y) dy

and u; Vt+1 are anonymous by assumption, it suKces to show that the function
F : �×� → R given by

F(�; x) =
∫
y:Vt+1(x;y)¿ 0

Vt+1(�;y) dy

is anonymous. By anonimity of Vt+1 it holds that

F(� + a; x + a) =
∫
y:Vt+1(x+a;y)¿ 0

Vt+1(� + a;y) dy

=
∫
y:Vt+1(x;y−a)¿ 0

Vt+1(�;y − a) dy

=
∫
z:Vt+1(x;z)¿ 0

Vt+1(�; z) dz=F(�; x);

where the third equation follows by substituting z=y−a. Hence, F is anony-
mous.
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Next, we show diagonal symmetry of Vt: Since by assumption u and Vt+1

are diagonally symmetric it suKces to show that F is diagonally symmetric:
By de7nition, we have that

F(�; � + a) =
∫
y:Vt+1(�+a;y)¿ 0

Vt+1(�;y) dy:

Since Vt+1 is diagonally symmetric we have

Vt+1(�;y) = Vt+1(�; � + (y − �))

= Vt+1(�; �− (y − �)) =Vt+1(�; 2�− y) (A.1)

for all y: By anonimity and diagonal symmetry of Vt+1 we have

Vt+ 1(�+a;y) = Vt+ 1(�−a;y−2a) =Vt+ 1(�−a; 2(�−a)−(y−2a))

= Vt+1(�− a; 2�− y); (A.2)

where the second equation follows from applying property (A.1) to Vt+1(�−
a;y − 2a): Using the two equations above, we obtain

F(�; � + a) =
∫
y:Vt+1(�+a;y)¿ 0

Vt+1(�;y) dy

=
∫
y:Vt+1(�−a;2�−y)¿ 0

Vt+1(�; 2�− y) dy

=
∫
z:Vt+1(�−a;z)¿ 0

Vt+1(�; z) dz=F(�; �− a);

where the last equation follows from the change of variable z= 2�−y: Hence,
F is diagonally symmetric.

Finally, we show that Vt is strictly concave. Since

Vt(�; x) = �tu(�; x) + Vt+1(�; x) + F(�; x)

and u(�; ·); Vt+1(�; ·) are strictly concave by induction assumption it suKces
to show that the function F(�; ·) is concave for all �:

Using diagonal symmetry and anonymity of F , we obtain

F(�; x) =F(0; x − �) =F(0; �− x) =F(x; �)

for all �; x: Similarly, Vt+1(�; x) =Vt+1(x; �): Consequently

F(�; x) = F(x; �) =
∫
y:Vt+1(�;y)¿ 0

Vt+1(x;y) dy

=
∫
y:Vt+1(�;y)¿ 0

Vt+1(y; x) dy: (A.3)
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In order to prove concavity of F(�; ·); we show that

F(�; ax + (1 − a)z)¿ aF(�; x) + (1 − a)F(�; z)

for all �; x; z ∈� and all a∈ [0; 1]: By equation (A.3), we have

F(�; ax + (1 − a)z)

=
∫
y:Vt+1(�;y)¿ 0

Vt+1(y; ax + (1 − a)z) dy

¿
∫
y:Vt+1(�;y)¿ 0

(aVt+1(y; x) + (1 − a)Vt+1(y; z)) dy

= a
∫
y:Vt+1(�;y)¿ 0

Vt+1(y; x) dy + (1 − a)
∫
y:Vt+1(�;y)¿ 0

Vt+1(y; z) dy

= aF(�; x) + (1 − a)F(�; z):

Here, the inequality follows from the induction assumption that Vt+1(y; ·) is
concave. This completes the proof of our statement.

(b) In order to prove that the special limit equilibrium S is the almost
unique limit equilibrium, we show that the game satis7es the indi6erence
condition and the boundedness condition. Since Vt is diagonally symmetric,
anonymous and strictly concave for all t we have that

{x |Vt(�; x) = 0} is either empty or equal to {�− at; � + at}

for all t and �, where at does not depend on �. Hence, {x |Vt(�; x) = 0} always
has Lebesgue measure zero, implying that the game satis7es the indi6erence
condition.

In order to prove the boundedness condition, let a¡0 be given. Since Vt

is diagonally symmetric, anonymous and strictly concave, we have that

{x |Vt(�; x)¿ a} is either empty or equal to [�− bt; � + bt]

for all t and � where bt does not depend on �. So, �({x |Vt(�; x)¿ a}) = 0 or
2bt for all t and �: Let M = max{2b1; : : : ; 2bT}: Then, �({x |Vt(�; x)¿ a}6M
for all t and � and hence the boundedness condition is satis7ed.

(c) Next, we show that the limit equilibrium S is such that St(�)⊂{x |
u(�; x)¿ 0} for all t and �: We use induction on t.

For t =T the statement is true since ST (�) = {x |VT (�; x)¿ 0}= {x |
�Tu(�; x)¿ 0}= {x | u(�; x)¿ 0} since �t¿0:

Now let t¡T: Suppose that u(�; x)¡0: We show that Vt(�; x)¡0:
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Since by assumption St+1(�) = {x |Vt+1(�; x)¿ 0}⊂{x | u(�; x)¿ 0} it fol-
lows that Vt+1(�; x)¡0: By de7nition,

Vt(�; x) = �tu(�; x) + Vt+1(�; x) +
∫
y:Vt+1(x;y)¿ 0

Vt+1(�;y) dy:

As before, let

F(�; x) =
∫
y:Vt+1(x;y)¿ 0

Vt+1(�;y) dy:

Therefore it suKces to show that F(�; x)6 0: Since Vt+1 is strictly concave,
anonymous and diagonally symmetric it follows that {y |Vt+1(x;y)¿ 0} is
either empty or equal to [x − a; x + a] for some a¿ 0.

If it is empty, then F(�; x) = 0 by de7nition. If a= 0 then, also, F(x) = 0:
Now, suppose that a¿0: Then,

F(�; x) =
∫
y∈ [x−a;x+a]

Vt+1(�;y) dy= 2a
∫
y∈ [x−a;x+a]

Vt+1(�;y)
1
2a

dy;

= 2aE�[Vt+1(�; ·)]
where � is the uniform distribution on [x− a; x + a] and E�[Vt+1(�; ·)] is the
expected marginal value of Vt+1(�; ·) with respect to �. Since Vt+1(�; ·) is
concave we know by Jensen’s inequality that

E�[Vt+1(�; ·)]6Vt+1(�;E�(y)) =Vt+1(�; x)¡0

which implies that F(x)¡0: This completes the proof of the statement.
(d) Finally, we turn to the special case where only the utility at the 7nal

stage is relevant, i.e. �t = 0 for all t¡T: We show that St(�)⊂ St+1(�) for all
t and �:

In this special case, the marginal value functions Vt are given by the re-
cursive formula VT (�; x) = �Tu(�; x) and

Vt(�; x) =Vt+1(�; x) +
∫
y:Vt+1(x;y)¿ 0

Vt+1(�;y) dy=Vt+1(�; x) + F(�; x)

if t¡T: Suppose that x =∈ St+1(�): Then, by de7nition, Vt+1(�; x)¡0: In the
proof of the previous statement, we have seen that Vt+1(�; x)¡0 implies
F(�; x)¡0: Hence, Vt(�; x) =Vt+1(�; x)+F(x)¡0 which means that x =∈ St(�):
This completes the proof.
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