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1 Introduction

The solution concept of correlated equilibrium, which has been proposed by Au-
mann (1974), is constructed within an epistemic framework based on possible
worlds, information partitions, and a common prior probability measure. Of-
ten, in scientific articles and game theory textbooks, a more direct definition
of correlated equilibrium is used that simply formulates correlated equilibrium
as a probability measure on choice combinations. The latter solution concept is
sometimes called canonical correlated equilibrium (e.g. Forges, 1990) or corre-
lated equilibrium distribution (e.g. Aumann, 1987) in the literature. The ques-
tion arises whether these two definitions are actually interchangeable or whether
they represent two different solution concepts.

The two notions can be compared from two perspectives, which differ with
respect to whether information has been received (ex post) or not (ex ante)
by the players. It is well-known that from the ex ante perspective correlated
equilibrium and canonical correlated equilibrium coincide. More precisely, the
induced probability measure on choice combinations of a correlated equilibrium
using the common prior only (and not the players’ information) is equal to
some canonical correlated equilibrium, and vice versa. However, the relevant
perspective for reasoning and decision-making in games is ex post. Indeed, the
posterior belief of a player about his opponents’ choices – conditionalized on his
information in the case of correlated equilibrium and conditionalized on one of his
choices in the case of canonical correlated equilibrium – constitute the outcome
of the player’s reasoning. In other words, the players’ posterior beliefs represent
a solution concept doxastically. Optimal choice in line with a player’s reasoning
then characterizes the respective solution concept behaviourally. An appropriate
comparison of solution concepts in terms of their game-theoretic semantics thus
needs to address these two – doxastic and behavioural – dimensions.

Here, we show that correlated equilibrium and canonical correlated equilib-
rium are neither doxastically nor behaviourally equivalent. First of all, inspired
by the game in Aumann and Dreze’s (2008) Figure 2A, we illustrate that corre-
lated equilibrium and canonical correlated equilibrium may induce different sets
of first-order beliefs i.e. beliefs about the respective opponents’ choice combina-
tions, ex post. Secondly, we construct an example where correlated equilibrium
and canonical correlated equilibrium also differ behaviourally, i.e. in terms of op-
timal choice. Hence, correlated equilibrium and canonical correlated equilibrium
constitute two distinct solution concepts for static games. In order to under-
stand their difference an epistemic perspective is pursued with standard type-
based epistemic models of games. First of all, transformations from Aumann’s
epistemic framework to type-based models and back are defined. We show that
these transformations turn correlated equilibria into epistemic models that sat-
isfy a common prior assumption as well as contain types expressing common
belief in rationality, and vice versa. An epistemic characterization of correlated
equilibrium in terms of common belief in rationality and a common prior from
an ex post perspective then ensues. We then introduce the epistemic condition
of one-theory-per-choice. Intuitively, a reasoner satisfying this condition never
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uses in his entire belief hierarchy distinct first-order beliefs to explain the same
choice for any player. We give an epistemic characterization of canonical cor-
related equilibrium in terms of common belief in rationality, a common prior,
and the one-theory-per-choice condition from an ex post perspective. In terms of
reasoning, canonical correlated equilibrium thus constitutes a more demanding
solution concept than correlated equilibrium. Conceptually, the one-theory-per-
choice condition contains a correctness of beliefs assumption. Accordingly, the
reasoner does not only always explain a given choice by the same first-order
belief throughout his entire belief hierarchy, but he also believes his opponents
to believe he does so, and he believes his opponents to believe their opponents
to believe he does so, etc. Furthermore, the reasoner does not only believe any
opponent to explain a given choice by the same first-order belief throughout his
entire belief hierarchy, but he also believes his opponents to believe he does so,
and he believes his opponents to believe their opponents to believe he does so,
etc. Since its epistemic characterization exhibits correctness of beliefs properties,
canonical correlated equilibrium has a Nash equilibrium flavour, while Aumann’s
original solution concept of correlated equilibrium does not.

We proceed as follows. In Section 2, the two definitions of correlated equi-
librium within the framework of static games are recalled. It is then shown in
Section 3 that the two solution concepts are not equivalent – neither doxastically
nor behaviourally. In Section 4, a standard type-based epistemic framework is
presented which is later used to analyze correlated equilibrium and canonical
correlated equilibrium. Both solution concepts are characterized epistemically
in Section 5 and their difference is explained. Finally, some conceptual issues
are discussed in Section 6. In particular, the relation to Nash equilibrium is
addressed.

2 Preliminaries

A static game is modelled as a tuple Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
, where I is a

finite set of players, Ci denotes player i’s finite choice set, and Ui : ×j∈ICj → R
is player i’s utility function, which assigns a real number ui(c) to every choice
combination c ∈ ×j∈ICj . For the class of static games the solution concept of
correlated equilibrium has been introduced by Aumann (1974) and given an
epistemic foundation in terms of universal rationality and a common prior from
an ex ante perspective by Aumann (1987).1 Loosely speaking, in a correlated
equilibrium the players’ choices are required to satisfy a best response property
given a probability measure on the opponents’ choice combinations derived from
a common prior via Bayesian updating within some information structure.

1 Note that Aumann (1987) actually gives an epistemic characterization of canoni-
cal correlated equilibrium from an ex ante perspective. However, since correlated
equilibrium and canonical correlated equilibrium are equivalent from an ex ante
perspective, Aumann’s (1987) epistemic characterization also applies to correlated
equilibrium.



4

In fact, the notion of correlated equilibrium is embedded in the epistemic
framework of Aumann models, which describe the players’ knowledge and beliefs
in terms of information partitions. Formally, an Aumann model of a game Γ is a
tuple AΓ =

(
Ω, π, (Ii)i∈I , (σi)i∈I

)
, where Ω is a finite set of all possible worlds,

π ∈ ∆(Ω) is a common prior probability measure on the set of all possible
worlds, Ii is an information partition on Ω for every player i ∈ I such that
π
(
Ii(ω)

)
> 0 for all ω ∈ Ω, with Ii(ω) denoting the cell of Ii containing ω,

and σi : Ω → Ci is an Ii-measurable choice function for every player i ∈ I.
Conceptually, the Ii-measurability of σi ensures that i entertains no uncertainty
whatsoever about his own choice, i.e. σi(ω

′) = σi(ω) for all ω′ ∈ I(ω). Note that
beliefs of players are explicitly expressible in Aumann models of games. Indeed,
beliefs are obtained via Bayesian conditionalization on the common prior given
the respective player’s information. More precisely, an event E ⊆ Ω consists of
possible worlds, and player i’s belief in E at a world ω is defined as bi(E,ω) :=

π
(
E | Ii(ω)

)
=

π
(
E∩Ii(ω)

)
π
(
Ii(ω)

) . For instance, given a choice combination s−i of

player i’s opponents, the set {ω ∈ Ω : σj(ω) = sj for all j ∈ I \ {i}} denotes the
event that i’s opponents play according to s−i.

Within the framework of Aumann models and in line with Aumann (1974),
the notion of correlated equilibrium – sometimes also called objective correlated
equilibrium – is formally defined as follows.

Definition 1. Let Γ be a game, and AΓ an Aumann model of it with choice
functions σi : Ω → Ci for every player i ∈ I. The tuple (σi)i∈I of choice
functions constitutes a correlated equilibrium, if for every player i ∈ I, and
for every world ω ∈ Ω, it is the case that∑
ω′∈Ii(ω)

π
(
ω′ | Ii(ω)

)
·Ui
(
σi(ω), σ−i(ω

′)
)
≥

∑
ω′∈Ii(ω)

π
(
ω′ | Ii(ω)

)
·Ui
(
ci, σ−i(ω

′)
)

for every choice ci ∈ Ci.

Intuitively, a choice function tuple constitutes a correlated equilibrium, if for
every player, the choice function specifies at every world a best response given
the common prior conditionalized on the player’s information and given the
opponents’ choice functions.

Aumann structures induce for every player a probability measure at every
world about the respective opponents’ choices – typically called first-order belief
– via an appropriate projection of the conditionalized common prior. Given a
game Γ a first-order belief βi ∈ ∆(C−i) of some player i ∈ I is possible in a
correlated equilibrium, if there there exists an Aumann model AΓ of Γ such
that the tuple (σj)j∈I constitutes a correlated equilibrium and with some world
ω̂ ∈ Ω such that

βi(c−i) = π
(
{ω′ ∈ Ii(ω̂) : σ−i(ω

′) = c−i} | Ii(ω̂)
)

for all c−i ∈ C−i.
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From a behavioural viewpoint it is ultimately of interest what choices a player
can make given a particular line of reasoning and decision-making fixed by spe-
cific epistemic assumptions or by a specific solution concept. Formally, given a
game Γ a choice c∗i ∈ Ci of some player i ∈ I is optimal in a correlated equi-
librium, if there exists an Aumann model AΓ of Γ such that the tuple (σj)j∈I
constitutes a correlated equilibrium and with some world ω̂ ∈ Ω such that∑
ω′∈Ii(ω̂)

π
(
ω′ | Ii(ω̂)

)
· Ui
(
c∗i , σ−i(ω

′)
)
≥

∑
ω′∈Ii(ω̂)

π
(
ω′ | Ii(ω̂)

)
· Ui
(
ci, σ−i(ω

′)
)

for all ci ∈ Ci.
Often, in the literature and in textbooks, the following more direct – and

simpler – definition of correlated equilibrium is used.

Definition 2. Let Γ be a game, and ρ ∈ ∆(×i∈ICi) a probability measure on the
players’ choice combinations. The probability measure ρ constitutes a canonical
correlated equilibrium, if for every player i ∈ I, and for every choice ci ∈ Ci of
player i such that ρ(ci) > 0, it is the case that∑

c−i∈C−i

ρ(c−i | ci) · Ui(ci, c−i) ≥
∑

c−i∈C−i

ρ(c−i | ci) · Ui(c′i, c−i)

for every choice c′i ∈ Ci.

Intuitively, a probability measure on the players’ choice combinations consti-
tutes a canonical correlated equilibrium, if every choice that receives positive
probability is optimal given the probability measure conditionalized on the very
choice itself.

Also, the solution concept of canonical correlated equilibrium naturally in-
duces for every player a first-order belief for each of his choices via Bayesian
conditionalization. Given a game Γ , a first-order belief βi ∈ ∆(C−i) of some
player i ∈ I is possible in a canonical correlated equilibrium, if there there exists
a canonical correlated equilibrium ρ ∈ ∆(×j∈ICj) and a choice ĉi ∈ Ci of player
i with ρ(ĉi) > 0 such that

βi(c−i) = ρ(c−i | ĉi)

for all c−i ∈ C−i.
Finally, optimal choice with a canonical correlated equilibrium also needs

to be fixed in order to relate the two definitions of correlated equilibrium be-
haviourally. Formally, given a game Γ , a choice c∗i ∈ Ci of some player i ∈ I is
optimal in a canonical correlated equilibrium, if there exists a canonical corre-
lated equilibrium ρ ∈ ∆(×j∈ICj) and a choice ĉi ∈ Ci of player i with ρ(ĉi) > 0
such that ∑

c−i∈C−i

ρ(c−i | ĉi) · Ui(c∗i , c−i) ≥
∑

c−i∈C−i

ρ(c−i | ĉi) · Ui(c′i, c−i)

for all c′i ∈ Ci.
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3 Difference of the Two Definitions

With two notions of correlated equilibrium existing in the literature the natural
question emerges whether they are equivalent or not from an ex post perspective.
The two solution concepts can be compared doxastically as well as behaviourally.

Suppose that a first-order belief βi ∈ ∆(C−i) is possible in a canonical cor-
related equilibrium of some game Γ , i.e. βi(c−i) = ρ(c−i | ĉi) for all c−i ∈ C−i
for some canonical correlated equilibrium ρ ∈ ∆(×j∈ICj) of Γ and for some
choice ĉi ∈ Ci with ρ(ĉi) > 0. Construct an Aumann structure AΓ with Ω :=
{ω(cj)j∈I : (cj)j∈I ∈ ×j∈ICj such that ρ

(
(cj)j∈I

)
> 0}, Ij :=

{
{ω(cj ,c−j) ∈ Ω :

c−j ∈ C−j} : cj ∈ Cj with ρ(cj) > 0
}

for all j ∈ I, π
(
ω(cj)j∈I

)
:= ρ

(
(cj)j∈I

)
for

all ω(cj)j∈I ∈ Ω, and σj(ω
(ck)k∈I ) = cj for all ω(ck)k∈I ∈ Ω and for all j ∈ I. As

ρ constitutes a canonical correlated equilibrium, observe that∑
ω∈Ii(ω(ĉi,c−i))

π
(
ω | Ii(ω(ĉi,c−i))

)
· Ui
(
σi(ω

(ĉi,c−i)), σ−i(ω)
)

=
∑

c−i∈C−i

ρ(c−i | ĉi) · Ui(ci, c−i) ≥
∑

c−i∈C−i

ρ(c−i | ĉi) · Ui(c′i, c−i)

=
∑

ω∈Ii(ω(ĉi,c−i))

π
(
ω | Ii(ω(ĉi,c−i))

)
· Ui
(
c′i, σ−i(ω)

)
holds for every choice c′i ∈ Ci and for every player i ∈ I, i.e. (σj)j∈I constitutes a

correlated equilibrium. It is also the case that ρ(c−i | ĉi) = π
(
{ω ∈ Ii

(
ω(ĉi,c−i)

)
:

σ−i
(
ω
)

= c−i} | Ii
(
ω(ĉi,c−i)

))
. Consequently, the following remark obtains.

Remark 1. Let Γ be a static game, i ∈ I some player, and β∗i ∈ ∆(C−i) some
first-order belief of player i. If β∗i is possible in a canonical correlated equilibrium,
then β∗i is possible in a correlated equilibrium.

The definition of optimal choice in a solution concept together with Remark
1 directly implies that optimality in a canonical correlated equilibrium implies
optimality in a correlated equilibrium.

Remark 2. Let Γ be a static game, i ∈ I some player, and c∗i ∈ Ci some choice of
player i. If c∗i is optimal in a canonical correlated equilibrium, then c∗i is optimal
in a correlated equilibrium.

However, it is now shown by means of an example that the converse of Remark
1 does not hold.

Example 1. Consider the two player game between Rowena and Colin depicted
in Figure 1, which is due to Aumann and Dreze (2008, Figure 2A).2

Let
(
Ω, π, (Ii)i∈I , (σi)i∈I

)
be an Aumann model of the game, where

2 In fact, Aumann and Dreze (2008) use the game depicted in Figure 1 to show that
Rowena’s expected payoff in a canonical correlated equilibrium can be different if
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Rowena

Colin
L C R

T 0, 0 4, 5 5, 4
M 5, 4 0, 0 4, 5
B 4, 5 5, 4 0, 0

Fig. 1. A two player static game between Rowena and Colin.

– I = {Rowena,Colin},
– Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7},
– π ∈ ∆(Ω) with π(ω1) = π(ω3) = 1

12 and π(ω) = 1
6 for all ω ∈ Ω \ {ω1, ω3},

– IRowena =
{
{ω1}, {ω2, ω3}, {ω4, ω5}, {ω6, ω7}

}
,

– IColin =
{
{ω1, ω3, ω5}, {ω2, ω7}, {ω4, ω6}

}
,

– σRowena(ω1) = σRowena(ω2) = σRowena(ω3) = T , σRowena(ω4) = σRowena(ω5)
= M , and σRowena(ω6) = σRowena(ω7) = B,

– σColin(ω1) = σColin(ω3) = σColin(ω5) = R, σColin(ω2) = σColin(ω7) = C,
and σColin(ω4) = σColin(ω6) = L.

Observe that (σi)i∈I constitutes a correlated equilibrium of the game. Also, the
first-order belief β∗Rowena ∈ ∆(CColin) of Rowena such that β∗Rowena(R) = 1 is
possible in a correlated equilibrium, as IRowena(ω1) = {ω1} and σColin(ω1) = R.

Suppose that there exists a canonical correlated equilibrium ρ ∈ ∆(CRowena×
CColin) with ρ(· | cRowena) = β∗Rowena for some cRowena ∈ CRowena such that
ρ(cRowena) > 0. Since cRowena is optimal for ρ(· | cRowena) = β∗Rowena, it is
the case that cRowena = T . Hence, ρ(· | T ) = β∗Rowena and thus ρ(R | T ) = 1.
Consequently, ρ(T,R) > 0 as well as ρ(T, L) = ρ(T,C) = 0. Then, ρ(M,C) =
ρ(B,C) = 0, as otherwise C is strictly dominated by L on {M,B}, contradicting
the optimality of C given ρ(· | C) ∈ ∆({M,B}). Then, ρ(B,L) = ρ(B,R) = 0, as
otherwise B is strictly dominated by M on {L,R}, contradicting the optimality
of B given ρ(· | B) ∈ ∆({L,R}). Then, ρ(M,L) = 0, as otherwise L is strictly
dominated by R on {M}, contradicting the optimality of L given ρ(· | L) ∈
∆({M}). Then, ρ(M,R) = 0, as otherwise M is strictly dominated by T on
{R}, contradicting the optimality of M given ρ(· | M) ∈ ∆({R}). Therefore,
it is the case that ρ(T,R) = 1. However, R is not optimal given ρ(· | R), a
contradiction. Hence, the first-order belief β∗Rowena ∈ ∆(CColin) of Rowena such
that β∗Rowena(R) = 1 is not possible in a canonical correlated equilibrium. ♣

The preceding example establishes the following remark.

Remark 3. There exists a game Γ , a player i ∈ I, and a first-order belief β∗i ∈
∆(C−i) of player i such that β∗i is possible in a correlated equilibrium but β∗i is
not possible in a canonical correlated equilibrium.

the game is doubled in the sense that each of her choices are listed twice. The game
is thus changed but only the solution concept of canonical correlated equilibrium is
considered. Here, we keep the game fixed, but switch between the solution concepts
of correlated equilibrium and canonical correlated equilibrium.
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Actually, in Example 1 the induced optimal choices are equal for both solution
concepts despite their difference in terms of possible first-order beliefs. Indeed,
observe that ρ ∈ ∆(CRowena×CColin) with ρ(c) = 1

9 for all c ∈ CRowena×CColin
constitutes a canonical correlated equilibrium of the game depicted in Figure 1
and for every player it is the case that every choice is optimal in ρ. Also, the
correlated equilibrium (σi)i∈I of this game from Example 1 exhibits the property
that for every player it is the case that every choice is optimal.

Yet, both definitions of correlated equilibrium can also be distinct in terms
of induced optimal choice as the next example shows.

Example 2. Consider the two player game between Alice and Bob depicted in
Figure 2.

Alice

Bob
e f g h

a 1, 1 2, 3 3, 2 0, 1
b 3, 2 1, 1 2, 3 2, 2
c 2, 3 3, 2 1, 1 1, 3
d 3, 0 0, 0 0, 0 0, 1

Fig. 2. A two player static game between Alice and Bob.

Suppose the Aumann model
(
Ω, π, (Ii)i∈I , (σ̂)i∈I

)
of the game, where

– Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7},
– π(ω1) = π(ω2) = π(ω5) = π(ω6) = π(ω7) = 1

6 and π(ω3) = π(ω4) = 1
12 ,

– IAlice = {{ω1, ω2}, {ω3}, {ω4, ω5}, {ω6, ω7}},
– IBob = {{ω3, ω4, ω6}, {ω1, ω7}, {ω2, ω5}},
– σAlice(ω1) = σAlice(ω2) = a, σAlice(ω3) = σAlice(ω4) = σAlice(ω5) = b, and
σAlice(ω6) = σAlice(ω7) = c,

– σBob(ω1) = σBob(ω7) = f , σBob(ω2) = σBob(ω5) = g, and σBob(ω3) =
σBob(ω4) = σBob(ω6) = e.

Observe that (σAlice, σBob) constitute a correlated equilibrium. Also, the
choice d of Alice is optimal in the correlated equilibrium (σAlice, σBob), since
d is optimal for Alice at world ω3.

However, it is now shown that d cannot be optimal in a canonical corre-
lated equilibrium. Towards a contradiction, suppose that there exists a canoni-
cal correlated equilibrium ρ ∈ ∆(CAlice × CBob), for which d is optimal. Then,
ρ(e | c1) = 1 for some choice c1 ∈ CAlice with ρ(c1) > 0, as otherwise c would
be strictly better than d for Alice. Since c1 needs to be optimal for ρ(· | c1), it
must be the case that c1 = b or c1 = d.

Suppose that c1 = d. Then, ρ(e | d) = 1 implies that ρ(e) > 0, which in turn
implies that e is optimal for ρ(· | e). As ρ(d | e) > 0, the choice h is thus better
than e, a contradiction.
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Alternatively, suppose that c1 = b, and thus ρ(e | b) = 1. It has to be the
case that ρ(d) = 0, as otherwise d is optimal for ρ(· | d), hence ρ(e | d) = 1, a
contradiction. Because ρ(d) = 0 and ρ(e | b) = 1, it follows that ρ(b, g) = 0 as well
as ρ(d, g) = 0. Therefore, ρ(b | g) = ρ(d | g) = 0 if ρ(g) > 0. Yet, if ρ(g) > 0, then
f is better than g against ρ(· | g), because in that case ρ(b | g) = ρ(d | g) = 0.
This is a contradiction, and thus ρ(g) = 0. Consequently, if ρ(a) > 0, then
ρ(g | a) = 0, and thus c is better than a against ρ(· | a), a contradiction, hence
ρ(a) = 0.

Since ρ(a) = ρ(d) = 0 as well as ρ(e | b) = 1, it is the case that ρ(a, f) =
ρ(d, f) = ρ(b, f) = 0, and therefore ρ(c | f) = 1 if ρ(f) > 0 . But then, if
ρ(f) > 0, the choice e is better than f against ρ(· | f), a contradiction, and thus
ρ(f) = 0.

As ρ(f) = ρ(g) = 0, it is the case that ρ(f | c) = ρ(g | c) = 0 if ρ(c) > 0.
Hence, if ρ(c) > 0, the choice b is better than c against ρ(· | c), a contradiction,
and thus ρ(c) = 0.

Since ρ(a) = ρ(c) = ρ(d) = 0 as well as ρ(e | b) = 1, it is the case that
ρ(b, e) = 1. But then ρ(b | e) = 1, and thus g is better than e against ρ(· | e), a
contradiction.

Consequently, there exists no canonical correlated equilibrium for which d is
optimal. ♣

Thus, the following remark ensues.

Remark 4. There exists a game Γ , some player i ∈ I, and some choice c∗i ∈ Ci of
player i such that c∗i is optimal in a correlated equilibrium but c∗i is not optimal
in a canonical correlated equilibrium.

Due to Remarks 3 and 4 correlated equilibrium and canonical correlated
equilibrium differ both doxastically as well as behaviourally. Hence, the two
notions actually constitute genuinely distinct solution concepts for static games.

4 Epistemic Models

Reasoning in games is usually modelled by belief hierarchies about the underlying
space of uncertainty. Due to Harsanyi (1967-68) types can be used as implicit
representations of belief hierarchies. The notion of an epistemic model provides
the framework to formally describe reasoning in games.

Definition 3. Let Γ be a static game. An epistemic model of Γ is a tupleMΓ =(
(Ti)i∈I , (bi)i∈I

)
, where for every player i ∈ I

– Ti is a finite set of types,

– bi : Ti → ∆(C−i × T−i) assigns to every type ti ∈ Ti a probability measure
bi[ti] on the set of opponents’ choice type combinations.
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Given a game and an epistemic model of it, belief hierarchies, marginal beliefs, as
well as marginal belief hierarchies can be derived from every type. For instance,
every type ti ∈ Ti induces a belief on the opponents’ choice combinations by
marginalizing the probability measure bi[ti] on the space C−i. Note that no
additional notation is introduced for marginal beliefs, in order to keep notation
as sparse as possible. It should always be clear from the context which belief
bi[ti] refers to.

Besides, we follow a one-player perspective approach, which considers game
theory as an interactive extension of decision theory. Accordingly, all epistemic
concepts – including iterated ones – are defined as mental states inside the mind
of a single person. A one-player approach seems natural in the sense that reason-
ing is formally represented by epistemic concepts and any reasoning process prior
to choice does indeed take place entirely within the reasoner’s mind. Formally,
this approach is parsimonious in the sense that states, describing the beliefs of
all players, do not have to be invoked in epistemic models of games.

Some further notions and notation are now introduced. For that purpose
consider a game Γ , an epistemic model MΓ of it, and fix two players i, j ∈ I
such that i 6= j.

A type ti ∈ Ti is said to deem possible some choice type combination (c−i, t−i)
of his opponents, if bi[ti] assigns positive probability to (c−i, t−i). Analogously, a
type ti ∈ Ti deems possible some opponent type tj ∈ Tj , if bi[ti] assigns positive
probability to tj .

For each choice type combination (ci, ti), the expected utility is given by

ui(ci, ti) =
∑

c−i∈C−i

(
bi[ti](c−i) · Ui(ci, c−i)

)
.

Intuitively, the common prior assumption in economics states that every
belief in models with multiple agents is derived from a single probability distri-
bution, the so-called common prior. In the epistemic framework of Definition 3
all beliefs are furnished by the types. The common prior assumption thus im-
poses a condition on the types, requiring all beliefs to be derived from a single
probability distribution on the basic space of uncertainty and the players’ types.

Definition 4. Let Γ be a static game, and MΓ an epistemic model of it. The
epistemic model MΓ satisfies the common prior assumption, if there exists a
probability measure ϕ ∈ ∆

(
×j∈I (Cj ×Tj)

)
such that for every player i ∈ I, and

for every type ti ∈ Ti it is the case that ϕ(ti) > 0 and

bi[ti](c−i, t−i) =
ϕ(ci, c−i, ti, t−i)

ϕ(ci, ti)

for all ci ∈ Ci with ϕ(ci, ti) > 0, and for all (c−i, t−i) ∈ C−i×T−i. The probability
measure ϕ is called common prior.

Accordingly, every type’s induced belief function obtains from a single prob-
ability measure – the common prior – via Bayesian updating. Note that the
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common prior is defined on the full space of uncertainty, i.e. on the set of all
the players’ choice type combinations, while belief functions are defined on the
space of respective opponents’ choice type combinations only. The common prior
assumption could be interpreted by means of an interim stage set-up, in which
every player i ∈ I observes the pair (ci, ti) on which he then conditionalizes.
Moreover, note that our common prior assumption according to Definition 4 is
equivalent to the conjunction of Dekel and Siniscalchi’s (2015) Definition 12.13
with their Definition 12.15.

Intuitively, an optimal choice yields at least as much payoff as all other op-
tions, given what the player believes his opponents to choose. Formally, optimal-
ity is a property of choices given a type. A choice c∗i ∈ Ci is said to be optimal
for the type ti, if

ui(c
∗
i , ti) ≥ ui(ci, ti)

for all ci ∈ Ci.
A player believes in rationality, if he only deems possible choice type pairs –

for each of his opponents – such that the choice is optimal for the respective type.
Formally, a type ti ∈ Ti is said to believe in rationality, if ti only deems possible
choice type combinations (c−i, t−i) ∈ C−i×T−i such that cj is optimal for tj for
every opponent j ∈ I \{i}. Note that belief in rationality imposes restrictions on
the first two layers of a player’s belief hierarchy, since the player’s belief about
his opponents’ choices as well as the player’s belief about his opponents’ beliefs
about their respective opponents’ choices are affected.

The conditions on interactive reasoning can be taken to further – arbitrarily
high – layers in belief hierarchies.

Definition 5. Let Γ be a static game, MΓ an epistemic model of it, and i ∈ I
some player.

– A type ti ∈ Ti expresses 1-fold belief in rationality, if ti believes in rationality.
– A type ti ∈ Ti expresses k-fold belief in rationality for some k > 1, if ti

only deems possible types tj ∈ Tj for all j ∈ I \ {i} such that tj expresses
k − 1-fold belief in rationality.

– A type ti ∈ Ti expresses common belief in rationality, if ti expresses k-fold
belief in rationality for all k ≥ 1.

A player satisfying common belief in rationality entertains a belief hierarchy
in which the rationality of all players is not questioned at any level. Observe
that if an epistemic model for every player only contains types that believe
in rationality, then every type also expresses common belief in rationality. This
fact is useful when constructing epistemic models with types expressing common
belief in rationality.

Consider two players i ∈ I and j ∈ I not necessarily distinct. A type tj of
player j is called belief-reachable from a type ti of player i, if there exists a finite
sequence (t1, . . . , tN ) of types with N ∈ N, where tn+1 ∈ supp(bk[tn]) such that
tn ∈ Tk for all n ∈ {1, . . . , N − 1}, and t1 = ti as well as tN = tj . Intuitively,
if a type tj is belief-reachable from a type ti, the former is not excluded in the
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interactive reasoning by the latter. The set Tj(ti) contains all belief-reachable
types of player j from ti. Similarly, a choice type pair (cj , tj) ∈ Cj × Tj is called
belief-reachable from ti, if there exists a finite sequence (t1, . . . , tN ) of types
with N ∈ N, where tn+1 ∈ supp(bk[tn]) for some k ∈ I such that tn ∈ Tk for
all n ∈ {1, . . . , N − 1}, t1 = ti as well as tN = tj , and bk(tN−1)(cj , tj) > 0.
The set of belief-reachable choice type pairs of player j from ti is denoted by
(Cj × Tj)(ti). Intuitively, if a choice type pair (cj , tj) is belief-reachable from a
type ti, the former is not excluded in the interactive reasoning by the latter.

The following lemma ensures that belief reachability preserves common belief
in rationality.

Lemma 1. Let Γ be a static game, MΓ an epistemic model of it, i, j ∈ I some
players, ti ∈ Ti a type of player i, and tj ∈ Tj a type of player j. If ti expresses
common belief in rationality and tj is belief reachable from ti, then tj expresses
common belief in rationality.

Proof. Assume that tj is belief reachable from ti in N > 1 steps, i.e. there exists
a finite sequence (t1, . . . , tN ) of types with tn+1 ∈ supp(bk[tn]) as well as t1 = ti
and tN = tj . Towards a contradiction suppose that tj does not express common
belief in rationality. Then, there exists k > 0 such that tj does not express k-fold
belief in rationality. However, as ti deems possible tj at the N -level of its induced
belief hierarchy, ti thus violates (N + k)-fold belief in rationality and a fortiori
common belief in rationality, a contradiction. �

The choice rule of rationality and the reasoning concept of common belief
in rationality give rational choice under common belief in rationality. More pre-
cisely, a choice c∗i ∈ Ci is said to be rational under common belief in rationality,
if there exists an epistemic modelMΓ of Γ with a type ti ∈ Ti of i such that c∗i
is optimal for ti and ti expresses common belief in rationality. Similarly, a choice
c∗i ∈ Ci is said to be rational under common belief in rationality with a common
prior, if there exists an epistemic model MΓ of Γ satisfying the common prior
assumption with a type ti ∈ Ti of i such that c∗i is optimal for ti and ti expresses
common belief in rationality. Besides, a first-order belief β∗i ∈ ∆(C−i) is said
to be possible under common belief in rationality with a common prior, if there
exists an epistemic model MΓ of Γ satisfying the common prior assumption
with a type ti ∈ Ti of i such that bi[ti](c−i) = β∗i (c−i) for all c−i ∈ C−i and ti
expresses common belief in rationality

5 Epistemic Comparison of the Two Definitions

Before the two solution concepts of correlated equilibrium and canonical cor-
related equilibrium are juxtaposed epistemically, the structural relationship be-
tween Aumann models and epistemic models is investigated.

On the one hand, epistemic models can be derived from Aumann models as
follows.
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Definition 6. Let Γ be a static game, and AΓ an Aumann model of Γ . For
every player i ∈ I, construct a set Ti := {tPi

i : Pi ∈ Ii}, a function ηi : Ω → Ti

such that ηi(ω) = t
Ii(ω)
i for all ω ∈ Ω, a function bi : Ti → ∆(C−i × T−i) such

that bi[t
Pi
i ](c−i, t−i) =

∑
ω∈Pi:σ−i(ω)=c−i,η−i(ω)=t−i

π(ω | Pi) for all (c−i, t−i) ∈
C−i × T−i and for all tPi

i ∈ Ti. The epistemic model η(AΓ ) of Γ thus obtained
is called the AΓ -induced epistemic model of Γ .

Accordingly, based on an Aumann model the functions ηi for every player i ∈ I
provide the ingredients for an epistemic model. In particular, these epistemic
models satisfy the common prior assumption as will – among other things – be
shown below in Theorem 1.

Conversely, epistemic models with a common prior also induce Aumann mod-
els.

Definition 7. Let Γ be a static game, and MΓ an epistemic model of Γ satis-
fying the common prior assumption with common prior ϕ. Construct a set Ω :=
{ω(ci,ti)i∈I : ci ∈ Ci, ti ∈ Ti for all i ∈ I such that ϕ

(
(ci, ti)i∈I

)
> 0}, a function

π ∈ ∆(Ω) such that π
(
ω(ci,ti)i∈I

)
= ϕ

(
(ci, ti)i∈I

)
for all ω(ci,ti)i∈I ∈ Ω, as well

as for every player i ∈ I a function σi : Ω → Ci such that σi
(
ω(cj ,tj)j∈I

)
= ci

for all ω(cj ,tj)j∈I ∈ Ω, and a partition Ii of Ω such that Ii
(
ω(cj ,tj)j∈I

)
=

{ω(ci,ti,c
′
−i,t

′
−i) ∈ Ω : c′−i ∈ C−i, t′−i ∈ T−i} for all ω(cj ,tj)j∈I ∈ Ω. The Aumann

model θ(MΓ ) of Γ thus obtained is called the MΓ -induced Aumann model of
Γ .

Note that given some game Γ , the structure η(AΓ ) can be expressed as the
image of a function from the collection of all Aumann models of Γ as domain
to the collection of all epistemic models of Γ as range, and the structure θ(MΓ )
can be expressed as the image of a function from the collection of all epistemic
models for Γ satisfying the common prior assumption as domain to the collection
of all Aumann models of Γ as range.

It is now shown that the transformations between Aumann models and epis-
temic models connect correlated equilibrium with common belief in rationality
and a common prior.

Theorem 1. Let Γ be a static game.

(i) Let AΓ be an Aumann model of Γ , and η(AΓ ) be the AΓ -induced epis-
temic model of Γ . If (σi)i∈I in AΓ constitutes a correlated equilibrium, then
all types in η(AΓ ) express common belief in rationality and η(AΓ ) satisfies
the common prior assumption.

(ii) Let MΓ be an epistemic model of Γ satisfying the common prior assump-
tion, and θ(MΓ ) be the MΓ -induced Aumann model of Γ . If all types in
MΓ express common belief in rationality, then (σi)i∈I in θ(MΓ ) constitutes
a correlated equilibrium.
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Proof. For part (i) of the theorem, let ω ∈ Ω be some world and t
Ii(ω)
i some

type of some player i ∈ I. Consider some player j ∈ I \{i} and some choice type

pair (cj , tj) ∈ Cj × Tj of player j such that bi[t
Ii(ω)
i ](cj , tj) > 0. As

bi[t
Ii(ω)
i ](c−i, t−i) =

∑
ω′∈Ii(ω):σ−i(ω′)=c−i,t

I−i(ω
′)

−i =t−i

π
(
ω′ | Ii(ω)

)
,

there exists a world ω′ ∈ Ii(ω) such that π(ω′) > 0, σ−i(ω
′) = c−i, and t

I−i(ω
′)

−i =
t−i. Since (σk)k∈I constitutes a correlated equilibrium, σj(ω

′) = cj is optimal

for j’s first-order belief at ω′ which is the same as t
Ij(ω′)
j ’s first-order belief by

construction of η(AΓ ). Because t
Ij(ω′)
j = tj , the choice cj is optimal for tj ’s

first-order belief and t
Ii(ω)
i thus believes in j’s rationality. As t

Ii(ω)
i as well as

t
Ij(ω′)
j have been chosen arbitrarily, all types in η(AΓ ) believe in rationality, and

consequently express common belief in rationality too.
Define a a probability measure ϕ ∈ ∆

(
×j∈I (Cj × Tj)

)
such that for all

(cj , t
Pj

j )j∈I ∈ ×j∈I(Cj × Tj)

ϕ
(
(cj , t

Pj

j )j∈I
)

:=

{
π(∩j∈IPj), if cj = σj(Pj) for all j ∈ I,
0, otherwise.

It is now shown that η(AΓ ) satisfies the common prior assumption, by estab-

lishing that for all j ∈ I and t
Pj

j ∈ Tj , it is the case that

bj [t
Pj

j ](c−j , t
P−j

−j ) =
ϕ
(
cj , t

Pj

j , c−j , t
P−j

−j
)

ϕ
(
cj , t

Pj

j

)
for all cj ∈ Cj with ϕ(cj , t

Pj

j ) > 0, and for all (c−j , t
P−j

−j ) ∈ C−j×T−j . Note that

ϕ(cj , t
Pj

j ) > 0 only holds if cj = σj(Pj). It thus has to be established that

bj [t
Pj

j ](c−j , t
Pj

−j) =
ϕ
((
σj(Pj), t

Pj

j

)
, (c−j , t

Pj

−j)
)

ϕ
(
σj(Pj), t

Pj

j

)
for all (c−j , t

P−j

−j ) ∈ C−j × T−j and for all t
Pj

j ∈ Tj . Consider some Pj ∈ Ij and
distinguish two cases (I) and (II).

Case (I). Suppose that Pj ∩ (∩k∈I\{j}Pk) 6= ∅ and ck = σk(Pk) for all k ∈
I \ {j}. Observe that

bj [t
Pj

j ](c−j , t
P−j

−j ) = bj [t
Pj

j ](σ−j(P−j), t
P−j

−j )

=
∑

ω′∈Pj :σ−j(ω′)=c−j ,t
I−j(ω

′)
−j =t

P−j
−j

π(ω′ | Pj)
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=
∑

ω′∈Pj :ω′∈Pk for all k∈I\{j}

π(ω′ | Pj)

=
π(∩k∈IPk)

π(Pj)

=
ϕ
(
σj(Pj), t

Pj

j , σ−j(P−j), t
P−j

−j
)∑

P̂−j∈I−j
π
(
Pj ∩ (∩k∈I\{j}P̂k)

)
=

ϕ
(
σj(Pj), t

Pj

j , σ−j(P−j), t
P−j

−j
)

∑
P̂−j∈I−j

ϕ
(
σj(Pj), t

Pj

j , σ−j(P̂−j), t
P̂−j

−j
)

=
ϕ
(
σj(Pj), t

Pj

j , σ−j(P−j), t
P−j

−j
)∑

(c−j ,t−j)∈C−j×T−j
ϕ
(
σj(Pj), t

Pj

j , c−j , t−j
)

=
ϕ
(
σj(Pj), t

Pj

j , σ−j(P−j), t
P−j

−j
)

ϕ
(
σj(Pj), t

Pj

j

) .

Case (II). Suppose that Pj ∩ (∩k∈I\{j}Pk) = ∅ or ck 6= σk(Pk) for some
k ∈ I \ {j}. Then,

bj [t
Pj

j ](c−j , t
P−j

−j ) = 0 =
ϕ
(
σj(Pj), t

Pj

j , c−j , t
P−j

−j
)

ϕ
(
σj(Pj), t

Pj

j

)
holds by definition. Hence, η(AΓ ) satisfies the common prior assumption.

For part (ii) of the theorem, let (cj , tj)j∈I ∈ ×j∈I(Cj × Tj) be some choice
type combination of all players such that ϕ

(
(cj , tj)j∈I

)
> 0. Consider the world

ω(cj ,tj)j∈I ∈ Ω in θ(MΓ ) and a choice c′i ∈ Ci of some player i ∈ I. Then,∑
ω′∈Ii

(
ω(cj,tj)j∈I

)π
(
ω′ | Ii

(
ω(cj ,tj)j∈I

))
· Ui
(
c′i, σ−i(ω

′)

=
∑

ω′∈Ii
(
ω(cj,tj)j∈I

) π(ω′)

π
(
Ii
(
ω(cj ,tj)j∈I

)) · Ui(c′i, σ−i(ω′))

=
∑

(c′−i,t
′
−i)∈C−i×T−i:ϕ(ci,ti,c′−i,t

′
−i)>0

ϕ(ci, c
′
−i, ti, t

′
−i)

ϕ(ci, ti)
· Ui(c′i, c′−i)

=
∑

(c′−i,t
′
−i)∈C−i×T−i:bi[ti](c′−i,t

′
−i)>0

bi[ti](c
′
−i, t

′
−i) · Ui(c′i, c′−i)

= ui(c
′
i, ti),

where the third equality follows from the fact thatMΓ satisfies the common prior
assumption with common prior ϕ. Now, consider some world ω(cj ,tj)j∈I ∈ Ω
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and some player i ∈ I. Since ϕ(ci, ti) > 0, there exists a type tj ∈ Tj such
that bj [tj ](ci, ti) > 0 for some player j ∈ I. As tj expresses common belief in
rationality, tj believes in i’s rationality. Hence

ui(ci, ti) ≥ ui(c′i, ti)

for all c′i ∈ Ci. Because

ui(c
′
i, ti) =

∑
ω′∈Ii

(
ω(cj,tj)j∈I

)π
(
ω′ | Ii

(
ω(cj ,tj)j∈I

))
· Ui
(
c′i, σ−i(ω

′)

for all c′i ∈ Ci, and σi
(
ω(cj ,tj)j∈I

)
= ci, it follows that∑

ω′∈Ii
(
ω(cj,tj)j∈I

)π
(
ω′ | Ii

(
ω(cj ,tj)j∈I

))
· Ui
(
σi
(
ω(cj ,tj)j∈I

)
, σ−i(ω

′)
)

= ui(ci, ti)

≥ ui(c′i, ti) =
∑

ω′∈Ii
(
ω(cj,tj)j∈I

)π
(
ω′ | Ii

(
ω(cj ,tj)j∈I

))
· Ui
(
c′i, σ−i(ω

′)
)

holds for all c′i ∈ Ci, and thus (σi)i∈I constitutes a correlated equilibrium. �

In fact, Theorem 1 can be interpreted as a morphism between Aumann models
and epistemic models that preserves some notions of optimality of choice and
common prior.

An epistemic characterization of correlated equilibrium in terms of common
belief in rationality and a common prior ensues as follows.

Theorem 2. Let Γ be a static game, i ∈ I some player, β∗i ∈ ∆(C−i) some
first-order belief of player i, and c∗i ∈ Ci some choice of player i.

(i) The first-order belief β∗i is possible in a correlated equilibrium, if and only
if, the first-order belief β∗i is possible under common belief in rationality with
a common prior.

(ii) The choice c∗i is optimal in a correlated equilibrium, if and only if, the
choice c∗i is rational under common belief in rationality with a common prior.

Proof. For the only if direction of part (i) of the theorem, let AΓ be an Au-
mann model of Γ and (σj)j∈I a correlated equilibrium, in which β∗i is possi-
ble. Then, there exists a world ω̂ ∈ Ω such that β∗i (c−i) = π

(
{ω′ ∈ Ii(ω̂) :

σ−i(ω
′) = c−i} | Ii(ω̂)

)
for all c−i ∈ C−i. Consider the epistemic model η(AΓ )

of Γ . By Theorem 1 (i), the type t
Ii(ω̂)
i expresses common belief in rationality,

and the epistemic model η(AΓ ) of Γ satisfies the common prior assumption.

Note that bi[t
Ii(ω̂)
i ](c−i, t−i) =

∑
ω∈Ii(ω̂):σ−i(ω)=c−i,η−i(ω)=t−i

π
(
ω | Ii(ω̂)

)
for

all (c−i, t−i) ∈ C−i × T−i, and thus β∗i (c−i) = bi[t
Ii(ω̂)
i ](c−i) for all c−i ∈ C−i.
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Therefore, the first-order belief β∗i is possible under common belief in rationality
with a common prior.

For the if direction of the part (i) of the theorem, suppose that β∗i is pos-
sible under common belief in rationality with a common prior. Thus, there
exists an epistemic model MΓ of Γ with a type t∗i ∈ Ti such that t∗i ex-
presses common belief in rationality, bi[t

∗
i ](c−i) = β∗i (c−i) for all c−i ∈ C−i,

and MΓ satisfies the common prior assumption. Construct an epistemic model
(MΓ )′ =

(
(T ′j)j∈I , (b

′
j)j∈I

)
of Γ , where for every player j ∈ I, the set T ′j of

types contains those tj ∈ Tj from MΓ such that tj ∈ Tj(t
∗
i ), i.e. tj is belief-

reachable from t∗i . Note that (MΓ )′ satisfies the common prior assumption,
with common prior ϕ′ ∈ ∆

(
×j∈I (Cj × T ′j)

)
being ϕ ∈ ∆

(
×j∈I (Cj × Tj)

)
from MΓ restricted to, and normalized on, ×j∈I(Cj × T ′j). By Lemma 1, all

types in (MΓ )′ express common belief in rationality. It then follows with The-
orem 1 (ii) that (σj)j∈I constitutes a correlated equilibrium in θ

(
(MΓ )′

)
. As

the first-order beliefs of t∗i are the same in (MΓ ) and (MΓ )′, the first-order
belief of t∗i equals β∗i also in (MΓ )′. Consider a world ω(ci,t

∗
i ,c−i,t−i) ∈ Ω

with ϕ′(ci, t
∗
i , c−i, t−i) > 0 for some ci ∈ Ci, c−i ∈ C−i, and t−i ∈ T−i.

Consequently, β∗i (c−i) = bi[t
∗
i ](c−i) =

∑
t−i∈T−i

ϕ(c−i, t−i | ci, t∗i ) = π
(
{ω ∈

Ii
(
ω(ci,t

∗
i ,c−i,t−i)

)
: σ−i

(
ω
)

= c−i} | Ii
(
ω(ci,t

∗
i ,c−i,t−i)

))
. Therefore, β∗i is possi-

ble in a correlated equilibrium.
For part (ii) of the theorem, let AΓ be an Aumann model of Γ and (σj)j∈I a

correlated equilibrium, in which c∗i is optimal. Then, there exists some first-order
belief β∗i ∈ ∆(C−i) possible in AΓ for which c∗i maximizes expected utility. By
part (i) of the corollary it then follows that β∗i is also possible under common
belief in rationality with a common prior, and consequently c∗i is optimal under
common belief in rationality with a common prior too. Conversely, letMΓ be an
epistemic model of Γ with a type t∗i ∈ Ti such that t∗i expresses common belief in
rationality, c∗i is optimal for t∗i , andMΓ satisfies the common prior assumption.
Let β∗i ∈ ∆(Ci) be the first-order belief of t∗i . Then, β∗i is possible under common
belief in rationality with a common prior. By part (i) of the corollary it then
follows that β∗i is also possible in a correlated equilibrium, and consequently c∗i
is optimal in a correlated equilibrium too. �

From an epistemic perspective correlated equilibrium is thus – doxastically
and behaviourally – equivalent to common belief in rationality with a common
prior. In fact, the epistemic characterization of correlated equilibrium according
to Theorem 2 is similar to Dekel and Siniscalchi (2015, Theorem 12.14). How-
ever, the two epistemic characterizations differ importantly in the sense that the
latter is provided for an ex ante perspective while the former is furnished for
an ex post perspective. Furthermore, a minor difference lies in the formulation
of the epistemic characterization in terms of belief hierarchies (Dekel and Sinis-
calchi, 2015, Theorem 12.14) as opposed to types (Theorem 2). Note that the
conditions used by Dekel and Sinischalchi (2015, Theorem 12.14) as well as by
Theorem 2 are weaker than in Aumann (1987), where correlated equilibrium is
characterized – from an ex ante perspective – in terms of universal rationality



18

and a common prior. More precisely, Aumann (1987) assumes that players are
rational at all possible worlds, which is stronger than common belief in ratio-
nality. Intuitively, in Aumann’s (1987) model no irrationality in the system is
admitted at all. Besides, Brandenburger and Dekel (1987) characterize a variant
of correlated equilibrium without a common prior – a posteriori equilibrium and
sometimes also called subjective correlated equilibrium – by common knowledge
of rationality.

Next canonical correlated equilibrium is considered from an epistemic per-
spective. Before the solution concept is epistemically characterized, two further
doxastic conditions are introduced.

Definition 8. Let Γ be a static game, MΓ an epistemic model of it, i, j ∈ I
two players, ti ∈ Ti some type of player i, βj ∈ ∆(C−j) some first-order belief of
player j, and cj ∈ Cj some choice of player j. The type ti always explains choice
cj by first-order belief βj, if for all tj ∈ Tj such that (cj , tj) ∈ (Cj × Tj)(ti), it
is the case that

bj [tj ](c−j) = βj(c−j)

for all c−j ∈ C−j.

Accordingly, every given choice deemed possible a reasoner accompanies with
the same first-order belief in his entire belief hierarchy. In this sense, throughout
his reasoning any given choice is explained in a unique way.

Requiring a player to always explain any choice with a fixed first-order belief
gives rise to the notion of one-theory-per-choice, as follows.

Definition 9. Let Γ be a static game,MΓ an epistemic model of it, i ∈ I some
player, and ti ∈ Ti some type of player i. The type ti holds one-theory-per-choice,
if for all j ∈ I, and for all cj ∈ Cj, there exists βj ∈ ∆(C−j) such that ti always
explains cj by βj.

Intuitively, a player reasoning in line with one-theory-per-choice never – i.e.
nowhere in his belief hierarchy – uses distinct first-order beliefs (“theories”) for
any player to explain the same choice of this player. The reasoner does thus not
use more theories than necessary in his belief hierarchy, which is in this sense
sparse. Besides, note that in Example 2 Bob’s belief hierarchy induced at world
ω3 actually violates the one-theory-per-choice condition. Indeed, Bob believes
with probability 1

4 that Alice chooses b while believing him to choose e, but
he also believes with probability 1

4 that Alice chooses b while believing him to
choose e with probability 1

3 and g with probability 2
3 .

In fact, the one-theory-per-choice condition contains a rather strong psycho-
logical assumption in terms of correctness of beliefs. Since at no iteration in
the full belief hierarchy of a reasoner holding one-theory-per-choice any given
choice is coupled with distinct first-order beliefs, the reasoner believes that his
opponents are correct about how he explains any choice, he believes that his
opponents believe that their opponents are correct about how he explains any
choice, etc. Also, the reasoner does not only believe that any opponent only
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uses a single theory to explain a given choice, but also believes that his other
opponents believe so, and that they believe their opponents to believe so, etc.
In particular, the following remark thus ensues.

Remark 5. Let Γ be a static game, MΓ an epistemic model of it, i ∈ I some
player, and ti ∈ Ti some type of player i that holds one-theory-per-choice. Con-
sider some player j ∈ I, some choice of player cj ∈ Cj , and some first-order
belief βj ∈ ∆(C−j) of player j such that ti always explains cj by βj .

(i) For all k ∈ I \ {i}, for all tk ∈ Tk such that bi[ti](tk) > 0, and for all t′i ∈ Ti
such that bk[tk](t′i) > 0, it is the case that t′i always explains cj by βj .

(ii) For all l ∈ I \ {i, j}, and for all tl ∈ Tl such that bi[ti](tl) > 0, it is the
case that tl always explains cj by βj .

Accordingly, the one-theory-per-choice condition thus contains two correctness
of beliefs assumptions: a reasoner believes his opponents to be correct about all
of his choice explanations as well as projects his choice explanations on any other
opponent. It is even the case that common belief in these two properties – or
formally in properties (i) and (ii) of Remark 5 – is implied by one-theory-per-
choice, as they are taken for certain in all interactive belief iterations.

Besides, a first-order belief βi ∈ Ci is said to be possible under common belief
in rationality with a common prior and one-theory-per-choice, if there exists an
epistemic model MΓ of Γ satisfying the common prior assumption with a type
t∗i ∈ Ti of i such that bi[t

∗
i ](c−i) = β∗i (c−i) for all c−i ∈ C−i and t∗i expresses

common belief in rationality as well as holds one-theory-per-choice. Similarly, a
choice c∗i ∈ Ci is said to be rational under common belief in rationality with a
common prior and one-theory-per-choice, if there exists an epistemic modelMΓ

of Γ satisfying the common prior assumption with a type t∗i ∈ Ti of i such that
c∗i is optimal for t∗i and t∗i expresses common belief in rationality as well as holds
one-theory-per-choice.

An epistemic characterization of canonical correlated equilibrium then ensues
as follows.

Theorem 3. Let Γ be a static game, i ∈ I some player, β∗i some first-order
belief of player i, and c∗i ∈ Ci some choice of player i.

(i) The first-order belief β∗i is possible in a canonical correlated equilibrium,
if and only if, the first-order belief β∗i is possible under common belief in
rationality with a common prior and one-theory-per-choice.

(ii) The choice c∗i is optimal in a canonical correlated equilibrium, if and only
if, the choice c∗i is rational under common belief in rationality with a common
prior and one-theory-per-choice.

Proof. For the only if direction of part (i) of the theorem, suppose that ρ ∈
∆(×j∈ICj) constitutes a canonical correlated equilibrium of Γ . For every j ∈ I
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define a type space Tj := {tcjj : ρ(cj) > 0} with induced belief function

bj [t
cj
j ](c−j , t−j) :=

{
ρ(c−j | cj), if t−j = t

c−j

−j ,

0, otherwise,

for every type t
cj
j ∈ Tj . Also, define a probability measure ϕ ∈ ∆

(
(Cj × Tj)j∈I

)
such that

ϕ
(
(cj , tj)j∈I

)
:=

{
ρ
(
(cj)j∈I

)
, if tj = t

cj
j for all j ∈ I,

0, otherwise,

for all (cj , tj)j∈I ∈ (Cj × Tj)j∈I .
Observe that

ϕ(cj , t
cj
j , c−j , t

c−j

−j )

ϕ(cj , t
cj
j )

=
ρ
(
(ck)k∈I

)
ρ(cj)

= ρ(c−j | cj) = bj [t
cj
j ](c−j , t

c−j

−j )

holds for all (cj , t
cj
j ) ∈ Cj × Tj , and thus the constructed epistemic model(

(Tj)j∈I , (bj)j∈I
)

satisfies the common prior assumption with common prior ϕ.
Next consider some type t

cj
j ∈ Tj and let (ck, tk), (ck, t

′
k) ∈ (Ck × Tk)(t

cj
j )

be belief-reachable from t
cj
j . By definition of Tk it holds that tk = t′k = tckk and

thus bk[tk](c−k) = bk[t′k](c−k) trivially holds for all c−k ∈ C−k. Therefore, t
cj
j

holds one-theory-per-choice. As t
cj
j has been chosen arbitrarily, all types in Tj

hold one-theory-per-choice.
Furthermore, let (ck, tk) ∈ Ck × Tk such that bj [t

cj
j ](ck, tk) > 0 for some

t
cj
j ∈ Tj . Then, tk = tckk and bk[tckk ](c−k) = ρ(c−k | ck) holds for all c−k ∈ C−k

as well as ρ(ck) > 0. Since ρ is a canonical correlated equilibrium, ck is optimal
for ρ(· | ck) and consequently optimal for tckk too. Hence, all types believe in
rationality and a fortiori all types express common belief in rationality.

Suppose that β∗i is possible in the canonical correlated equilibrium ρ. Then,
there exists some choice ĉi ∈ Ci with ρ(ĉi) > 0 such that ρ(c−i | ĉi) = β∗i (c−i) for
all c−i ∈ C−i. Consider the type tĉii ∈ Ti, which indeed exists due to ρ(ĉi) > 0,

and observe that bi[t
ĉi
i ](c−i) = ρ(c−i | ĉi) = β∗i (c−i) for all c−i ∈ C−i. Therefore,

the first-order belief β∗i is possible under common belief in rationality with a
common prior and one-theory-per-choice.

For the if direction of part (i) of the theorem, let MΓ be an epistemic
model of Γ that satisfies the common prior assumption with common prior
ϕ ∈ ∆

(
×j∈I (Cj × Tj)

)
, as well as t∗i ∈ Ti be a type such that t∗i expresses

common belief in rationality, holds one-theory-per-choice, and t∗i holds first-order
belief β∗i . It is shown that β∗i is possible in a canonical correlated equilibrium.

Consider some choice type pair (cj , tj) ∈ (Cj × Tj)(t∗i ) of some player j ∈ I
that is belief-reachable from t∗i . Then, there exists a sequence (t1, . . . , tN ) of
types such that t1 = t∗i , t

N = tj , bk[tn](tn+1) > 0 for all n ∈ {1, . . . , N − 1},
for some k ∈ I, and bl[t

N−1](cj , tj) > 0. As t∗i expresses (N − 1)-fold belief in
rationality, it directly follows that cj is optimal for tj .
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Define a probability measure ρ ∈ ∆(×k∈ICk) by

ρ
(
(ck)k∈I

)
:=


ϕ(×k∈I{ck}×Tk)

ϕ
(
×k∈I(Ck×Tk)(t∗i )

) , if ck ∈ Ck(t∗i ) for all k ∈ I,

0, otherwise,

for all (ck)k∈I ∈ ×k∈ICk, where Ck(t∗i ) := {ck ∈ Ck : (ck, tk) ∈ (Ck×Tk)(t∗i ) for some tk ∈
Tk}.

Let c̃j ∈ Cj be some choice such that ρ(c̃j) > 0. Thus, c̃j ∈ Cj(t∗i ) and there
exists some type t̃j ∈ Tj such that (c̃j , t̃j) ∈ (Cj × Tj)(t∗i ). Since t∗i expresses
common belief in rationality, it follows, that c̃j is optimal for t̃j . AsMΓ satisfies
the common prior assumption, it is the case that

bj [t̃j ](c−j , t−j) =
ϕ(c̃j , t̃j , c−j , t−j)

ϕ(c̃j , t̃j)

holds, and hence

bj [t̃j ](c−j) =
ϕ(c̃j , t̃j , {c−j} × T−j)

ϕ(c̃j , t̃j)

for all c−j ∈ C−j .
Since t∗i holds one-theory-per-choice, all types in the set Tj(c̃j) := {t′j ∈

Tj : (c̃j , t
′
j) ∈ (Cj × Tj)(t

∗
i )} have the same first-order belief βj ∈ ∆(C−j).

Consequently, for all t′j ∈ Tj(c̃j) it is the case that

bj [t
′
j ](c−j) =

ϕ({c̃j , t′j} × {c−j} × T−j)
ϕ(c̃j , t′j)

= βj(c−j)

for all c−j ∈ C−j . Then,

ρ(c−j | c̃j) =
ρ(c̃j , c−j)

ρ(c̃j)
=
ϕ
(
{c̃j} × Tj(c̃j)× {c−j} × T−j)

ϕ
(
{c̃j} × Tj(c̃j)

)
∑
t′j∈Tj(c̃j)

ϕ({c̃j , t′j} × {c−j} × T−j)∑
t′j∈Tj(c̃j)

ϕ(c̃j , t′j)
=

∑
t′j∈Tj(c̃j)

βj(c−j) · ϕ(c̃j , t
′
j)∑

t′j∈Tj(c̃j)
ϕ(c̃j , t′j)

= βj(c−j)

for all c−j ∈ C−j . Thus, t̃j ’s first-order belief is βj = ρ(· | c̃j), and – since c̃j is
optimal for t̃j – it is the case that c̃j is optimal for ρ(· | c̃j). Therefore, ρ is a
canonical correlated equilibrium.

Recall that t∗i holds first-order belief β∗i . It is shown that β∗i is possible in the
canonical correlated equilibrium ρ. As ϕ(t∗i ) > 0, andMΓ satisfies the common
prior assumption, it follows that (c̃i, t

∗
i ) ∈ (Ci × Ti)(t

∗
i ) for some c̃i ∈ Ci. In

fact, there exists a player l ∈ I such that bi[t
∗
i ](tl) > 0 and bl[tl](c̃i, t

∗
i ) > 0.

Since t∗i holds one-theory-per-choice, β∗i is the unique first-order belief attached
to c̃i in t∗i ’s induced belief hierarchy. As t∗i ∈ Ti(c̃i), it follows from above that
β∗i (c−i) = bi[t

∗
i ](c−i) = ρ(c−i | c̃i) for all c−i ∈ C−i. Consequently, β∗i is possible

in a canonical correlated equilibrium.
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For part (ii) of the theorem, let ρ be a canonical correlated equilibrium,
in which c∗i is optimal. Then, there exists some first-order belief β∗i ∈ ∆(C−i)
possible in ρ for which c∗i maximizes expected utility. By part (i) of the theo-
rem it then follows that β∗i is also possible under common belief in rationality
with a common prior and one-theory-per-choice, thus c∗i is optimal under com-
mon belief in rationality with a common prior and one one-theory-per-choice
too. Conversely, let MΓ be an epistemic model of Γ with a type t∗i ∈ Ti such
that t∗i expresses common belief in rationality, t∗i holds one-theory-per-choice,
c∗i is optimal for t∗i , and MΓ satisfies the common prior assumption. Let β∗i be
t∗i ’s first-order belief. Then, β∗i is possible under common belief in rationality
with a common prior and one-theory-per-choice. By part (i) of the theorem it
then follows that β∗i is also possible in a canonical correlated equilibrium, and
consequently c∗i is optimal in a canonical correlated equilibrium too. �

From an epistemic perspective the solution concept of canonical correlated equi-
librium thus is substantially stronger than correlated equilibrium by also requir-
ing the reasoner’s thinking to be in line with the one-theory-per-choice condition,
which in turn contains a correctness of beliefs assumption.

It can be concluded that correlated equilibrium and canonical correlated
equilibrium are distinct solution concepts both behaviourally as well as doxasti-
cally. The epistemic characterizations via Theorems 2 and 3 shed light on under-
standing this difference. Indeed, canonical correlated equilibrium requires some
correctness of beliefs property – the one-theory-per-choice condition – in addi-
tion to common belief in rationality and a common prior also used by correlated
equilibrium. Since some correctness of beliefs assumption also constitutes the
substantial reasoning property of Nash equilibrium, canonical correlated equi-
librium appears to be closer to this solution concept, while correlated equilibrium
seems to be more distant from it. Also, canonical correlated equilibrium can thus
be seen as a more demanding solution concept than correlated equilibrium in
terms of reasoning.

6 Discussion

One-Theory-per-Choice. A player reasoning in line with the one-theory-per-
choice condition uses for each of his opponents’ choices only a single first-order
belief in his whole belief hierarchy. In other words, a player never uses two dif-
ferent first-order beliefs to explain the same choice in his whole belief hierarchy.
The one-theory-per-choice condition thus keeps a belief hierarchy lean. Such a
sparsity condition is similar to Perea’s (2012) epistemic notion of simple belief
hierarchies, which require a belief hierarchy to be entirely generated by a tuple
of first-order beliefs. Since simple belief hierarchies are closely connected to Nash
equilibrium and the one-theory-per-choice condition to canonical correlated equi-
librium, the resemblance between the two conditions in terms of leanness gives
canonical correlated equilibrium some Nash equilibrium flavour, which is absent
from correlated equilibrium due to lacking such a leanness condition.
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Common Belief in Rationality. The one-theory-per-choice condition does not
have any behavioural effect if imposed in addition to common belief in rational-
ity only. Intuitively, if a choice is rational under common belief in rationality,
it is well-known that it then survives iterated elimination of strictly dominated
choices. It is possible to construct an epistemic model such that there exists a
single type for every surviving choice. As for every choice there then exists a
unique supporting type, belief in rationality already requires a unique way of
coupling opponents’ choices and types in the support of a given player’s induced
belief function. Consequently, the one-theory-per-choice condition holds in such
an epistemic model. Therefore, a choice is rational under common belief in ra-
tionality, if and only if, it is rational under common belief in rationality with
one-theory-per-choice.

Thus, the one-theory-per-choice-condition does not add anything in terms of
optimal choice to common belief in rationality. Only if a common prior is also
assumed the one-theory-per-choice condition exhibits behavioural implications
beyond common belief in rationality resulting in canonical correlated equilibrium
and not in iterated elimination of strictly dominated choices. Remark 5 also
distinguishes the one-theory-per-choice condition from simple belief hierarchies.
Indeed, the assumption of simple belief hierarchies in conjunction with common
belief in rationality behaviourally yields Nash equilibrium (Perea, 2012).

Nash Equilibrium. The epistemic analysis of Nash equilibrium (e.g. Aumann
and Brandenburger, 1995; Perea, 2007; Barelli, 2009; Bach and Tsakas, 2014;
Bonanno, 2017) has unveiled a correctness of beliefs assumption as the decisive
epistemic property of Nash equilibrium. In fact, a correctness of beliefs prop-
erty also features implicitly in the one-theory-per-choice condition: the reasoner
believes that his opponents are correct about his theories, believes that his op-
ponents believe that their opponents are correct about his theories, etc. Thus,
canonical correlated equilibrium exhibits some Nash equilibrium flavour, whereas
correlated equilibrium does not.

To some extent, the lack of a correctness of beliefs assumption for corre-
lated equilibrium illustrates its fundamental difference to Nash equilibrium. In-
tuitively, the former solution concept only requires players to behave optimally
given the opponents’ choice functions, while the latter necessitates players to
behave optimally given the opponents’ actual choices.

Nash equilibrium can be characterized by common belief in rationality to-
gether with simple belief hierarchies. The correctness of beliefs assumptions due
to simple belief hierarchies and one-theory-per-choice can be compared. As the
whole belief hierarchy is generated by a single tuple of first-order beliefs, the con-
dition simple belief hierarchies directly implies the one-theory-per-choice condi-
tion. However, it is possible in a belief hierarchy satisfying the one-theory-per-
choice condition that different choices of some opponent are coupled with types
inducing distinct first-order beliefs for that opponent, which is impossible for
simple belief hierarchies, as all choices of a player are explained by only a single
theory in the reasoner’s entire belief hierarchy. Besides, simple belief hierarchies
imply independence of the first-order beliefs that they are generated with, which



24

is not necessarily the case with belief hierarchies satisfying the one-theory-per-
choice condition. Therefore, if a type holds a simple belief hierarchy, then he also
holds one-theory-per-choice, while it is possible that a type holds one-theory-per-
choice but no simple belief hierarchy.

The one-theory-per-choice condition thus constitutes a weaker correctness
of beliefs assumption than the simplicity condition. It can then be argued that
implausibility criticisms due to implicit correctness of beliefs properties affect
Nash equilibrium stronger than canonical correlated equilibrium.

Besides, correctness of beliefs inherent in simple belief hierarchies or one-
theory-per-choice lies entirely inside the mind of the respective reasoner. In this
one-person perspective sense the notion of correctness used here is distinct from
the truth axiom (“a proposition is implied by the belief in it”), which is the way
correctness of beliefs is typically understood in philosophy. In fact, the truth
axiom cannot be expressed in the one-person perspective type-based epistemic
models used here (Definition 3), as a formal notion of state is lacking. In a sense,
correctness of beliefs in the sense of simple belief hierarchies and one-theory-
per-choice is a subjective property, while the truth axiom embodies an objective
correctness of beliefs trait.

Common Prior Assumption. The common prior assumption is present in both
Theorem 2 and Theorem 3, and thus underlies correlated equilibrium as well
as canonical correlated equilibrium. Psychologically, belief hierarchies derived
from a common prior can be interpreted as exhibiting a kind of symmetry in
the reasoning of the respective player and his opponents. While the existence
of a common prior does imply that a player believes that his opponents assign
positive probability to his true belief hieararchy, a genuine correctness of beliefs
property of a common priror is not directly apparent. The exploration of be-
lief hierarchies derived from a common prior and any potential correctness of
beliefs properties represents an intriguing question for further research. In any
case, Nash equilibrium and canonical correlated equilibrium implicitly assume
simple belief hierarchies and one-theory-per-choice, respectively, as correctness
of beliefs properties. Therefore, canonical correlated equilibrium is conceptually
closer to Nash equilibrium than correlated equilibrium is to Nash equilibrium,
independent of whether the common prior assumption exhibits any correctness
of beliefs flavour, or not.

Ex Ante and Ex Post. From an ex ante perspective before any reasoning or
decision-making takes place, correlated equilibrium and canonical correlated
equilibrium induce the same probability measure on the players’ choice combi-
nations. While a canonical correlated equilibrium ρ ∈ ∆(×i∈ICi) directly spec-
ifies such a probability measure, the induced such measure in Aumann struc-
tures – being based on the common prior and the choice functions – is given
by π

(
{ω ∈ Ω : σi(ω) = ci for all i ∈ I}

)
∈ ∆(×i∈ICi). Thus, equivalence ex

ante is formally expressed by ρ
(
(ci)i∈I

)
:= π

(
{ω ∈ Ω : σi(ω) = ci for all i ∈ I}

)
for all (ci)i∈I ∈ ×i∈ICi such that ρ and (σi)i∈I constitute a canonical corre-
lated equilibrium and correlated equilibrium, respectively, of the same under-
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lying game. If (σi)i∈I constitutes a correlated equilibrium, then simply define
ρ
(
(ci)i∈I

)
:= π

(
{ω ∈ Ω : σi(ω) = ci for all i ∈ I}

)
for all (ci)i∈I ∈ ×i∈ICi and

it then follows by the proof of Aumann (1987, Main Theorem) that ρ consti-
tutes a canonical correlated equilibrium. Conversely, if ρ ∈ ∆(×i∈ICi) consti-
tutes a canonical correlated equilibrium, observe that the constructed correlated
equilibrium in the paragraph just before Remark 1 exhibits the property that
π
(
{ω ∈ Ω : σi(ω) = ci for all i ∈ I}

)
= ρ
(
(ci)i∈I

)
for all (ci)i∈I ∈ ×i∈ICi.

While the equivalence of correlated equilibrium and canonical correlated equi-
librium in terms of the induced probability measure on the players’ choice com-
binations a priori is well-known, such an ex ante equivalence is only of limited
interest for reasoning and decision-making in games. Indeed, the posterior be-
liefs and the optimal choices in line with these posterior beliefs are the relevant
objects for reasoning and decision-making. The two solution concepts have been
shown here to differ in terms of both their possible posterior beliefs (Remark
3) as well as their optimal choices (Remark 4), i.e. in terms of both dimensions
significant for reasoning and decision-making.

Two Distinct Solution Concepts. The epistemic characterizations of correlated
equilibrium (Theorem 2) and canonical correlated equilibrium (Theorem 3) show
that the two solution concepts are actually distinct. In addition to common be-
lief in rationality and a common prior, canonical correlated equilibrium also
requires a correctness of beliefs assumption in form of the one-theory-per-choice
condition and thus makes stronger epistemic assumption than correlated equilib-
rium. Intuitively, in a correlated equilibrium a player can justify an opponent’s
choice with two different first-order beliefs in his reasoning, but not in canonical
correlated equilibrium. In classical terms, correlated equilibrium and its sim-
plified variant differ, because two information cells can induce the same choice
yet different conditional beliefs for a given player via his choice function in a
correlated equilibrium, while two different conditioning events, i.e. two distinct
choices, always induce different choices in a canonical correlated equilibrium, as
the conditioning events in a canonical correlated equilibrium coincide with those
choices that receive positive weight by the probability measure on the players’
choice combinations. Hence, canonical correlated equilibrium can be viewed as a
special case of correlated equilibrium, where different information cells prescribe
different choices. To support a particular first-order belief in a correlated equi-
librium it may be crucial to use two information cells inducing the same choice
for a given player. There generally thus exists more flexibility to build beliefs
in a correlated equilibrium, and to consequently also make choices optimal. To
conclude, correlated equiilbrium and canonical correlated equilibrium form two
distinct solution concepts for games based on the idea of correlation.
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