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Abstract

An allocation rule is called Bayes–Nash incentive compatible, if there exists a payment rule, such that
truthful reports of agents’ types form a Bayes–Nash equilibrium in the direct revelation mechanism con-
sisting of the allocation rule and the payment rule. This paper provides a characterization of Bayes–Nash
incentive compatible allocation rules in social choice settings where agents have multi-dimensional types,
quasi-linear utility functions and interdependent valuations. The characterization is derived by construct-
ing complete directed graphs on agents’ type spaces with cost of manipulation as lengths of edges. Weak
monotonicity of the allocation rule corresponds to the condition that all 2-cycles in these graphs have non-
negative length. For the case that type spaces are convex and the valuation for each outcome is a linear
function in the agent’s type, we show that weak monotonicity of the allocation rule together with an inte-
grability condition is a necessary and sufficient condition for Bayes–Nash incentive compatibility.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with the characterization of Bayes–Nash incentive compatible al-
location rules in social choice settings where agents have independently distributed, multi-
dimensional types and quasi-linear utility functions, that is, utility is the valuation of an allocation
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minus a payment. We allow for interdependent valuations across agents. The central task ad-
dressed in this paper is the following: given such type distributions and valuations, characterize
precisely those allocation rules for which there exists a payment rule such that truthful reporting
of agent’s types forms a Bayes–Nash equilibrium in the direct revelation mechanism consisting
of the allocation rule combined with the payment rule. In addition, we aim for a framework that
lets us construct a payment rule, if any, which makes a particular allocation rule Bayes–Nash
incentive compatible. For example, given an allocation rule which decides in a combinatorial
auction for each set of bids for each agent which set of items he wins, we want to be able
to decide whether there exists a pricing scheme for winning bids that makes truthful bidding
a Bayes–Nash equilibrium. If the answer is yes, we would like to have means to construct such
a pricing scheme.

1.1. Related work

An allocation rule is dominant strategy incentive compatible, if there exists a payment rule
such that for any report of the other agents an agent maximizes his own utility by reporting truth-
fully his type. Roberts (1979) implicitly uses a monotonicity condition on the allocation rule
in order to derive his characterization of dominant strategy incentive compatible mechanisms
in terms of affine maximizers for unrestricted preference domains. For a selection of restricted
preference domains, Bikhchandani et al. (2006) characterize dominant strategy incentive com-
patibility directly in terms of a monotonicity condition on the allocation rule. Gui et al. (2004)
extend these results to larger classes of preference domains by making a link to network theory.
The most general results are by Saks and Yu (2005), who show that previous results extend to
any convex multi-dimensional type space.

The environment considered by Saks and Yu (2005) features quasi-linear utilities and multi-
dimensional types. The allocation rule maps agents’ type reports into a finite set of m possible
outcomes. An agent’s type is a vector in R

m reflecting his valuation of the different possible
outcomes, that is, the agent’s valuation of some outcome a is given by the ath element of his type
vector. Agents’ type spaces are assumed to be convex. Saks and Yu (2005) show that dominant
strategy incentive compatible allocation rules in this setting can be characterized in terms of weak
monotonicity, a term introduced by Bikhchandani et al. (2006). In order to derive this result they
construct complete directed graphs in the following way: Take some agent and fix a profile of
type reports for the others. Now, a directed graph is constructed by associating a node with each
outcome and putting a directed edge between each ordered pair of nodes. Take two outcomes a

and b. Consider the difference of the valuation of a and the valuation of b with respect to every
type for which truthfully reporting this type yields outcome a. The length of the network edge
from a to b is defined as the infimum of all these differences. In this fashion a graph is constructed
for every agent and every possible report profile of the other agents. Weak monotonicity states
that for any two different outcomes a and b, the sum of the two edge lengths from a to b and
from b to a is non-negative.

Earlier, Rochet (1987) characterized dominant strategy implementation in cases where the
set of outcomes is not necessarily finite; an assumption that is crucial to the work of Saks and
Yu (2005). He considers a setting where agents have multi-dimensional, convex type spaces
and valuation functions which are linear w.r.t. their own true types. Making some additional
differentiability assumptions, Rochet (1987) shows that in this case dominant strategy incentive
compatibility can be characterized in terms of a monotonicity condition on the allocation rule
plus an integrability condition.
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Monotonicity has also been used to characterize Bayes–Nash incentive compatible allocation
rules. Jehiel et al. (1999) and Jehiel and Moldovanu (2001) develop characterizations for social
choice settings where agents have multi-dimensional, convex type spaces and valuation functions
which are linear w.r.t. their true types. Their characterizations of Bayes–Nash incentive compati-
bility include a monotonicity condition on the allocation rule as well as an integrability condition
comparable to the one presented by Rochet (1987).

1.2. Our contribution

Similar to the network approach of Gui et al. (2004) and Saks and Yu (2005) we construct
graphs. If an allocation rule is Bayes–Nash incentive compatible, then there exists a payment
rule such that an agent’s expected utility for truthfully reporting his type t is at least as high
as his expected utility for misreporting some type s. Similarly, an agent’s expected utility for
truthfully reporting type s is at least as high as his expected utility for misreporting type t .
From combining these two conditions we get a weak monotonicity condition on the allocation
rule. This condition is the expected utility equivalent of the monotonicity condition mentioned
in the context of dominant strategy incentive compatible allocation rules. Weak monotonicity is
a necessary condition for Bayes–Nash incentive compatibility. It expresses that the expected gain
in valuation for truthfully reporting t instead of misreporting s should be at least as big as the
expected gain in valuation for misreporting t instead of truthfully reporting s.

Recognizing that the constraints inherent in the definition of Bayes–Nash incentive compat-
ibility have a natural network interpretation we build complete directed graphs for agents’ type
spaces. To do so we associate a node with each type and put a directed edge between each or-
dered pair of nodes. The length of the edge going from the node associated with type s to the
node associated with type t is defined as the cost of manipulation, that is, the expected differ-
ence in an agent’s valuation for truthfully reporting t instead of misreporting s. Note that unlike
the network approach of Gui et al. (2004) and Saks and Yu (2005) (see description above) we
construct only one graph for each agent since we work in terms of expectations and do not
consider each possible type profile of the other agents separately. Furthermore, each of these
graphs contains an infinite number of nodes as we associate a node with each possible type
of the agent. One could also construct outcome based graphs (as done by Gui et al., 2004;
Saks and Yu, 2005) by associating a node with each possible probability distribution over out-
comes. However, these graphs also contain an infinite number of nodes whenever the different
possible type reports of an agent induce an infinite number of probability distributions over out-
comes.

The outline of the paper is as follows: In Section 2 we state some basic assumptions and
definitions. Throughout the paper we assume that agents have quasi-linear utility functions and
independently distributed, privately known, multi-dimensional types. Furthermore, we allow for
interdependent valuations. We do not put any restrictions on the number of possible outcomes.

In Section 3 we show that an allocation rule is Bayes–Nash incentive compatible if and only
if the graphs described above contain no finite, negative length cycles. Rochet (1987) shows that
dominant strategy incentive compatibility can be characterized in terms of the absence of finite,
negative length cycles in similar graphs. Our result is the Bayes–Nash equivalent for his finding.

In Section 4 agents’ type spaces are assumed to be convex and their valuation functions are as-
sumed to be linear w.r.t. to their own true types. Even under these restrictions, weak monotonicity
alone is not sufficient for Bayes–Nash incentive compatibility, which is illustrated by an exam-
ple. However, we show that weak monotonicity together with an integrability condition is both
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necessary and sufficient for Bayes–Nash incentive compatibility. Using examples it is illustrated
that weak monotonicity and the integrability condition do not imply each other. The setting of
a single-item auction with externalities considered in Jehiel et al. (1999) and the social choice
setting considered in Jehiel and Moldovanu (2001) are special cases of the framework presented
in this section. Compared to their settings, our multi-dimensional framework allows for a broader
class of possible interdependencies between agents’ valuations.

The main contribution of this paper is thus to derive for the setting described above a complete
characterization of Bayes–Nash incentive compatibility in terms of weak monotonicity and an
additional integrability condition. Thereby we achieve a characterization that depends purely on
the valuations and the allocation rule. The characterization resembles the one derived by Rochet
(1987) for dominant strategy incentive compatibility. However, our result does not follow from
Rochet (1987) immediately, as we cover interdependent valuations.

2. The model and basic definitions

There is a set of agents N = {1, . . . , n}. Each agent i has a type t i ∈ T i with T i ⊆ R
k . T de-

notes the set of all type profiles t = (t1, . . . , tn), and T −i denotes the set of all type profiles
t−i = (t1, . . . , t i−1, t i+1, . . . , tn). A payment rule is a function

P :T �→ R
n,

so given a report profile r−i of the others, reporting a type ri results in a payment Pi(r
i, r−i ) for

agent i. Denoting the set of outcomes by Γ , an allocation rule is a function

f :T �→ Γ.

We allow for interdependent valuations across agents, that is, agents’ valuations do not only
depend on their own types but on the types of all agents. As an example one can think of an
auction for a painting (see Klemperer, 1999) where agents’ types reflect how much they like the
painting. An agent’s valuation for owning the painting depends on the types of the others as they
affect the possible resale value of the painting and the owner’s prestige. Take agent i having true
type t i and reporting ri while the others have true types t−i and report r−i . The value that agent i

assigns to the resulting allocation is denoted by vi(f (ri, r−i ) | t i , t−i ). Utilities are quasi-linear,
that is, an agent’s utility is his valuation of an allocation minus his payment.

Agents’ types are independently distributed. Let πi denote the density on T i . The joint density
π−i on T −i is then given by

π−i
(
t−i

) =
∏
j∈N
j �=i

πj
(
tj

)
.

Assume that agent i believes all other agents to report truthfully. If agent i has true type t i ,
then his expected utility for making a report ri is given by

Ui
(
ri

∣∣ t i
) =

∫
T −i

(
vi

(
f

(
ri , t−i

) ∣∣ t i , t−i
) − Pi

(
ri , t−i

))
π−i

(
t−i

)
dt−i

= E−i

[
vi

(
f

(
ri , t−i

) ∣∣ t i , t−i
) − Pi

(
ri , t−i

)]
. (1)

We assume E−i[vi(f (ri , t−i ) | t i , t−i )] to be finite ∀ri , t i ∈ T i .
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An allocation rule f is Bayes–Nash incentive compatible if there exists a payment rule P such
that ∀i ∈ N and ∀ri , r̃ i ∈ T i :

E−i

[
vi

(
f

(
ri , t−i

) ∣∣ ri , t−i
) − Pi

(
ri , t−i

)]
� E−i

[
vi

(
f

(
r̃ i , t−i

) ∣∣ ri , t−i
) − Pi

(
r̃ i , t−i

)]
. (2)

Symmetrically, we have also

E−i

[
vi

(
f

(
r̃ i , t−i

) ∣∣ r̃ i , t−i
) − Pi

(
r̃ i , t−i

)]
� E−i

[
vi

(
f

(
ri , t−i

) ∣∣ r̃ i , t−i
) − Pi

(
ri , t−i

)]
. (3)

By adding (2) and (3) we get the following monotonicity condition.1

Definition 1 (Weak monotonicity). An allocation rule f satisfies weak monotonicity if ∀i ∈ N

and ∀ri , r̃ i ∈ T i :

E−i

[
vi

(
f

(
ri , t−i

) ∣∣ ri , t−i
) − vi

(
f

(
r̃ i , t−i

) ∣∣ ri , t−i
)]

� E−i

[
vi

(
f

(
ri , t−i

) ∣∣ r̃ i , t−i
) − vi

(
f

(
r̃ i , t−i

) ∣∣ r̃ i , t−i
)]

.

This condition is the expected utility equivalent to the weak monotonicity (W-MON) condition
of Bikhchandani et al. (2006) and the 2-cycle inequality of Gui et al. (2004). The rationale for
naming the above condition weak monotonicity becomes evident once we consider valuation
functions that are linear with respect to agents’ types in Section 4. Obviously, weak monotonicity
is a necessary condition for Bayes–Nash incentive compatibility. In Section 4 we present a setting
where weak monotonicity together with an integrability condition is also a sufficient condition.

3. A network interpretation

We begin this section by briefly reviewing a well-known result from the field of network
flow theory.2 Let X = {x1, . . . , xk} be a finite set of variables. Consider the following system of
constraints:

xi − xj � wij ∀i, j ∈ {1, . . . , k}, (4)

where wij is some constant specific to the ordered pair (i, j). The system can be associated with
a network by constructing a directed, weighted graph whose nodes correspond to the variables.
A directed edge is put between each ordered pair of nodes. The length of the edge from the node
corresponding to xi to the node corresponding to xj is given by wij .

It is a well-known result (see, e.g., Shostak, 1981) that the system of linear inequalities in (4) is
feasible, that is, there exists an assignment of real values to the variables such that the constraints
in (4) are satisfied, if and only if there is no negative length cycle in the associated network.
Furthermore, if the system is feasible then one feasible solution is to assign to each xi the length
of a shortest path from the node associated with xi to some arbitrary source node.3

1 Expected payments cancel since we work under the assumption of independently distributed types.
2 A comprehensive introduction to network flows can be found in Ahuja et al. (1993).
3 In order to be consistent with the existing literature we defined the system of constraints as in (4). However, in network

theory the constraints are commonly defined as xj − xi � wij . In this case, if the system is feasible then one feasible
solution is to assign to each xi the length of a shortest path from some arbitrary source node to the node associated
with xi .
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In order to see that the constraints in (2) have a natural network interpretation it is useful to
rewrite (2) as follows

E−i

[
Pi

(
ri , t−i

) − Pi

(
r̃ i , t−i

)]
� E−i

[
vi

(
f

(
ri , t−i

) ∣∣ ri , t−i
) − vi

(
f

(
r̃ i , t−i

) ∣∣ ri , t−i
)]

. (5)

Considering a specific allocation rule, the right-hand side of (5) is a constant. Thus, we have
a system of difference constraints as described in (4) (except that we are now dealing with a po-
tentially infinite number of variables).

Given this observation, we associate the system of inequalities (5) with a network in the same
way as is described above. For each agent we build a complete directed graph T i

f . A node is
associated with each type and a directed edge is put between each ordered pair of nodes. For
agent i the length of an edge directed from ri to r̃ i is denoted li (ri , r̃ i ) and is defined as the cost
of manipulation:

li
(
ri , r̃ i

) = E−i

[
vi

(
f

(
ri , t−i

) ∣∣ ri , t−i
) − vi

(
f

(
r̃ i , t−i

) ∣∣ ri , t−i
)]

. (6)

Given our previous assumptions, the edge length is finite. For technical reasons we allow for
loops. However, note that an edge directed from ri to ri has length li (ri , ri) = 0.

Using this definition of the edge lengths, the weak monotonicity condition can be written as

li
(
ri , r̃ i

) + li
(
r̃ i , ri

)
� 0 ∀i ∈ N, ∀ri , r̃ i ∈ T i.

So weak monotonicity corresponds to the absence of negative length 2-cycles in the graphs de-
scribed above.

Rochet (1987) observed that dominant strategy incentive compatibility can be characterized
in terms of the absence of finite, negative length cycles in similar graphs. Using the same proof
technique, we can derive such a characterization for Bayes–Nash incentive compatibility as well.

Theorem 1. An allocation rule f is Bayes–Nash incentive compatible if and only if there is no
finite, negative length cycle in T i

f ∀i ∈ N .

Proof. (Adapted from Rochet, 1987.) Take some agent i and let C = (ri
1, . . . , r

i
m, ri

m+1 = ri
1)

denote a finite cycle in T i
f . Let us assume that f is Bayes–Nash incentive compatible. This

implies, using (5) and the edge length definition (6), that for every j ∈ {1, . . . ,m},
E−i

[
Pi

(
ri
j , t

−i
) − Pi

(
ri
j+1, t

−i
)]

� li
(
ri
j , r

i
j+1

)
.

Adding up these inequalities yields

0 �
m∑

j=1

li
(
ri
j , r

i
j+1

)
,

so C has non-negative length.
Conversely, let us assume that there exists no finite, negative length cycle in T i

f ∀i ∈ N . For

each agent i we pick an arbitrary source node ri
0 ∈ T i and define ∀ri ∈ T i

pi
(
ri

) = inf
m∑

li
(
ri
j , r

i
j+1

)
,

j=1
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Fig. 1. Decomposition monotonicity.

where the infimum is taken over all finite paths A = (ri
1 = ri , . . . , ri

m+1 = ri
0) in T i

f , that is, all

finite paths that start at ri and end at ri
0. Absence of finite, negative length cycles implies that

pi(ri
0) = 0. Furthermore, ∀ri ∈ T i we have

pi
(
ri

0

)
� pi

(
ri

) + li
(
ri

0, r
i
)

which implies that pi(ri) is finite. For every pair ri , r̃ i ∈ T i we also have

pi
(
ri

)
� pi

(
r̃ i

) + li
(
ri , r̃ i

)
.

Thus, by setting4 Pi(r
i , t−i ) = pi(ri) ∀t−i ∈ T −i , and using (6) we get

E−i

[
Pi

(
ri , t−i

) − Pi

(
r̃ i , t−i

)]
� E−i

[
vi

(
f

(
ri , t−i

) ∣∣ ri , t−i
) − vi

(
f

(
r̃ i , t−i

) ∣∣ ri , t−i
)]

.

Hence, the constraints in (5) are satisfied and f is Bayes–Nash incentive compatible. �

Let us conclude this section with a condition for the costs of manipulation that is used in the
derivation of the characterization theorem presented in the following section.

Definition 2 (Decomposition monotonicity). The costs of manipulation are decomposition
monotone if ∀ri, r̄ i ∈ T i and ∀ri ∈ T i s.t. ri = (1 − α)ri + αr̄i , α ∈ (0,1), we have

li
(
ri, r̄ i

)
� li

(
ri , ri

) + li
(
ri , r̄ i

)
.

So looking at a pair of nodes, if decomposition monotonicity holds then the direct edge between
those nodes is at least as long as any path connecting the same two nodes via nodes lying on the
line segment between them. Figure 1 gives an illustrative example. Decomposition monotonicity
implies that the edge from ri to r̄ i is at least as long as the path A = (ri , ri∗∗, r̄ i ) and that A is at
least as long as the path Ã = (ri , ri∗, ri∗∗, ri∗∗∗, r̄ i ).

4. Weak monotonicity and path independence

In this section we restrict the rather general setting presented in Section 2. We assume that
T i is convex for each agent i. Furthermore, we now assume that an agent’s valuation function is
linear in his own true type. So if agent i has true type t i and reports ri while the others have true
types t−i and report r−i , his valuation for the resulting allocation is

4 Note that it is sufficient if P is set such that E−i [Pi(r
i , t−i )] = pi(ri ) + c. This allows for a variety of payment

rules yielding the same expected payments up to an additive constant.
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vi
(
f

(
ri , r−i

) ∣∣ t i , t−i
) = αi

(
f

(
ri , r−i

) ∣∣ t−i
) + βi

(
f

(
ri , r−i

) ∣∣ t−i
)
t i . (7)

Note that αi :Γ × T −i �→ R and βi :Γ × T −i �→ R
k , i.e. αi assigns to every (γ, t−i ) ∈ Γ × T −i

a value in R, whereas βi assigns to every (γ, t−i ) ∈ Γ ×T −i a vector in R
k . Similarly, assuming

he believes all other agents to report truthfully, agent i’s expected valuation for reporting ri while
having true type t i is

E−i

[
vi

(
f

(
ri , t−i

) ∣∣ t i , t−i
)]

= E−i

[
αi

(
f

(
ri , t−i

) ∣∣ t−i
)] + E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)]

t i . (8)

Using (8), the weak monotonicity condition becomes

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
) − βi

(
f

(
r̃ i , t−i

) ∣∣ t−i
)](

ri − r̃ i
)
� 0

∀i ∈ N, ∀ri , r̃ i ∈ T i. (9)

In this restricted setting weak monotonicity implies that the costs of manipulation are decom-
position monotone.

Lemma 1. Suppose that every agent i has a valuation function which is linear in his true type: If
f satisfies weak monotonicity then the costs of manipulation are decomposition monotone.

Proof. Take some agent i and let ri, r̄ i ∈ T i . Let ri ∈ T i such that ri = (1−α)ri +αr̄i for some
α ∈ (0,1). Weak monotonicity implies that

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
) − βi

(
f

(
r̄ i , t−i

) ∣∣ t−i
)](

ri − r̄ i
)
� 0.

Note that ri − ri is proportional to ri − r̄ i , specifically ri − ri = α
1−α

(ri − r̄ i ). Since α ∈ (0,1),
the above inequality implies that

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
) − βi

(
f

(
r̄ i , t−i

) ∣∣ t−i
)](

ri − ri
)
� 0.

Adding E−i[βi(f (ri, t−i ) | t−i ) − βi(f (ri , t−i ) | t−i )]ri on both sides of the latter inequality
and rearranging terms yields

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
) − βi

(
f

(
r̄ i , t−i

) ∣∣ t−i
)]

ri

+ E−i

[
βi

(
f

(
ri, t−i

) ∣∣ t−i
) − βi

(
f

(
ri , t−i

) ∣∣ t−i
)]

ri

� E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
) − βi

(
f

(
r̄ i , t−i

) ∣∣ t−i
)]

ri

+ E−i

[
βi

(
f

(
ri, t−i

) ∣∣ t−i
) − βi

(
f

(
ri , t−i

) ∣∣ t−i
)]

ri .

Notice that the first and the last term on the left-hand side of the inequality cancel. Hence, us-
ing (6), the above can be written as

li
(
ri, r̄ i

)
� li

(
ri , ri

) + li
(
ri , r̄ i

)
,

so the costs of manipulation are decomposition monotone. �
It can be shown (Müller et al., 2005) that if agents’ type spaces are one-dimensional then weak

monotonicity is a sufficient condition for Bayes–Nash incentive compatibility. Unfortunately, if
type spaces are multi-dimensional then weak monotonicity alone is not sufficient anymore, as is
illustrated below in Example 1.
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This example is constructed based on the following insight: Suppose that the allocation func-
tion f and the mapping βi are such that we can write

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)] = riBi,

where Bi is some agent specific k × k matrix. Weak monotonicity requires(
ri − r̃ i

)
Bi

(
ri − r̃ i

)′ � 0 ∀ri , r̃ i ∈ T i,

where ′ denotes “transposed.” Note that

Bi = 1

2
(Bi + B ′

i ) + 1

2
(Bi − B ′

i ),

that is, Bi can be decomposed into a symmetric part 1
2 (Bi + B ′

i ) and an anti-symmetric part
1
2 (Bi − B ′

i ). Weak monotonicity is already satisfied if the symmetric part of Bi is positive semi-
definite. However, there are no finite, negative length cycles in T i

f (and thus f is Bayes–Nash
incentive compatible) if and only if Bi is symmetric and positive semi-definite (both results
follow from Rockafellar, 1970, p. 240).

Example 1. For simplicity we assume that there exists only a single agent. Furthermore, we take
the mapping βi in (7) to be linear and the mapping αi to be constant and equal to zero. The
agent’s type is one of three extreme types, denoted x, y and z, or any convex combination of
these. His type space can be parameterized by a simplex with vertices x = (1,0,0), y = (0,1,0)

and z = (0,0,1). Thus, the agent’s type space T = conv{x, y, z} consists of the convex hull of the
three unit vectors in R

3. There are three elementary outcomes, denoted a, b and c. If the agent is
of type x, his valuations for these outcomes are given by the first column of the following matrix:

V =
(2 0 3

3 2 0
0 3 2

)
.

The first element is his valuation for a, the second one for b and the third one for c. Similarly, if
the agent is of type y or z, his valuations for the elementary outcomes are given by the second
and the third column of V . The allocation rule f is a linear mapping associating each type
report with a probability distribution over the three elementary outcomes. The outcome space Γ

is the set of all possible probability distributions on {a, b, c}. Generic element γ = (γa, γb, γc)

indicates that a is achieved with probability γa , b with probability γb and c with probability γc.
The allocation rule works as follows: If the agent reports x as his type then f awards him with the
second-best outcome according to this type, that is f (x) = (1,0,0). Similarly, f (y) = (0,1,0)

and f (z) = (0,0,1). In general we have f (r) = rI , where I denotes the 3 × 3 identity matrix.
Using the above, the agent’s valuation function becomes v(f (r) | t) = rV t ′. As easily can

be checked (by verifying that the symmetric part 1
2 (V + V ′) of V is positive definite), weak

monotonicity is satisfied, that is, (r − r̃)V (r − r̃)′ � 0 ∀r, r̃ ∈ T . Nevertheless, the 3-cycle C =
(x, y, z, x) has length l(x, y) + l(y, z) + l(z, x) = −3 (see also Fig. 2). The existence of such
a negative length cycle implies that f is not Bayes–Nash incentive compatible (see Theorem 1).

From the above example it is evident that weak monotonicity alone is not enough to ensure
Bayes–Nash incentive compatibility. However, in the following we are going to show that weak
monotonicity together with an integrability condition is sufficient.
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Fig. 2. The negative cycle C in Example 1.

Definition 3 (Path independence). Let ψ :T i �→ R
k be a vector field. ψ is called path indepen-

dent if for any two ri, r̄ i ∈ T i the path integral of ψ from ri to r̄ i

r̄ i∫
ri ,S

ψ

is independent of the path of integration S.

Note that E−i[βi(f (ri , t−i ) | t−i )] is a vector field T i �→ R
k .

Theorem 2. Suppose that every agent i has a convex type space and a valuation function which
is linear in his true type. Then the following statements are equivalent:

(1) f is Bayes–Nash incentive compatible.
(2) f satisfies weak monotonicity and for every agent i, E−i[βi(f (ri , t−i ) | t−i )] is path inde-

pendent.

Proof. (1) ⇒ (2). Let us assume that f is Bayes–Nash incentive compatible. As mentioned in
Section 2, the necessity of weak monotonicity follows trivially. Furthermore, from Theorem 1
it follows that for every agent i the graph T i

f has no finite, negative length cycles. Let C =
(ri

1, . . . , r
i
m, ri

m+1 = ri
1) denote a finite cycle in T i

f . Absence of finite, negative length cycles
implies that

m∑
j=1

li
(
ri
j , r

i
j+1

)
� 0

which can be rewritten using (6) and (8) as

m∑
E−i

[
βi

(
f

(
ri
j , t

−i
) ∣∣ t−i

) − βi
(
f

(
ri
j+1, t

−i
) ∣∣ t−i

)]
ri
j � 0.
j=1



354 R. Müller et al. / Games and Economic Behavior 61 (2007) 344–358
This implies that
m∑

j=1

E−i

[
βi

(
f

(
ri
j+1, t

−i
) ∣∣ t−i

)](
ri
j+1 − ri

j

)
� 0.

Thus, E−i[βi(f (ri , t−i ) | t−i )] is cyclically monotone.5 From Rockafellar (1970, Theorem 24.8)
it follows that there exists a convex function ϕ :T i �→ R such that E−i[βi(f (ri , t−i ) | t−i )] is
a selection from its subdifferential mapping, that is,

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)] ∈ ∂ϕ

(
ri

) ∀ri ∈ T i.

This implies (see Krishna and Maenner, 2001, Theorem 1) that for any smooth path S in T i

joining ri and r̄ i the following holds:

r̄ i∫
ri ,S

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)] = ϕ

(
r̄ i

) − ϕ
(
ri

)
,

so E−i[βi(f (ri, t−i ) | t−i )] is path independent.
(2) ⇒ (1). Let us assume that f satisfies weak monotonicity and that for every agent i,

E−i[βi(f (ri, t−i ) | t−i )] is path independent. Take any edge from T i
f and denote its starting

node ri and its ending node r̄ i . Let L denote the line segment between ri and r̄ i , i.e. L = {ri ∈
T i | ri = (1 − α)ri + αr̄i , α ∈ [0,1]}. Now we pick any ri ∈ L and substitute the original edge
with the path A = (ri , ri , r̄ i ) which has length li (ri , ri) + li (ri , r̄ i ). By Lemma 1 we have

li
(
ri, r̄ i

)
� li

(
ri , ri

) + li
(
ri , r̄ i

)
, (10)

that is, the original edge is at least as long as the path A. By repeated substitution we can generate
a new path Ã = (ri

1 = ri , . . . , ri
m, ri

m+1 = r̄ i ), where ri
j ∈ L ∀j ∈ {1, . . . ,m + 1}. Then (10)

implies that the original edge is at least as long as Ã, that is,

li
(
ri, r̄ i

)
�

m∑
j=1

li
(
ri
j , r

i
j+1

)
(see also the example given in Fig. 1). Note that

m∑
j=1

li
(
ri
j , r

i
j+1

) =
m∑

j=1

E−i

[
vi

(
f

(
ri
j , t

−i
) ∣∣ ri

j , t
−i

) − vi
(
f

(
ri
j+1, t

−i
) ∣∣ ri

j , t
−i

)]
= E−i

[
vi

(
f

(
ri

1, t
−i

) ∣∣ ri
1, t

−i
) − vi

(
f

(
ri
m+1, t

−i
) ∣∣ ri

m, t−i
)]

+
m−1∑
j=1

E−i

[
vi

(
f

(
ri
j+1, t

−i
) ∣∣ ri

j+1, t
−i

) − vi
(
f

(
ri
j+1, t

−i
) ∣∣ ri

j , t
−i

)]
= E−i

[
vi

(
f

(
ri

1, t
−i

) ∣∣ ri
1, t

−i
) − vi

(
f

(
ri
m+1, t

−i
) ∣∣ ri

m+1, t
−i

)]
+

m∑
j=1

E−i

[
vi

(
f

(
ri
j+1, t

−i
) ∣∣ ri

j+1, t
−i

) − vi
(
f

(
ri
j+1, t

−i
) ∣∣ ri

j , t
−i

)]

5 The notion of cyclical monotonicity was introduced by Rockafellar (1966).
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= E−i

[
vi

(
f

(
ri, t−i

) ∣∣ ri, t−i
) − vi

(
f

(
r̄ i , t−i

) ∣∣ r̄ i , t−i
)]

+
m∑

j=1

E−i

[
βi

(
f

(
ri
j+1, t

−i
) ∣∣ t−i

)](
ri
j+1 − ri

j

)
.

The first equality follows from the definition of the edge length given in (6). The second equality
follows from rearranging the terms of the summation. The third equality is derived by adding
and subtracting E−i[vi(f (ri

m+1, t
−i ) | ri

m+1, t
−i )]. To derive the last equality we use (8) and that

ri
1 = ri , ri

m+1 = r̄ i . By repeated substitution we can generate paths with more and more edges.
In the limit the distance between neighboring nodes goes to zero and

m∑
j=1

E−i

[
βi

(
f

(
ri
j+1, t

−i
) ∣∣ t−i

)](
ri
j+1 − ri

j

) →
r̄ i∫

ri ,L

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)]

.

Thus, the length of Ã goes to

E−i

[
vi

(
f

(
ri, t−i

) ∣∣ ri, t−i
) − vi

(
f

(
r̄ i , t−i

) ∣∣ r̄ i , t−i
)]

+
r̄ i∫

ri ,L

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)]

, (11)

as m → ∞. Now, let C = (ri
1, . . . , r

i
m, ri

m+1 = ri
1) denote a finite cycle in T i

f . Furthermore, let

Lj denote the line segment between ri
j and ri

j+1. The result in (11) and the path independence

of E−i[βi(f (ri, t−i ) | t−i )] imply for the length of C that

m∑
j=1

li
(
ri
j , r

i
j+1

)
�

m∑
j=1

E−i

[
vi

(
f

(
ri
j , t

−i
) ∣∣ ri

j , t
−i

) − vi
(
f

(
ri
j+1, t

−i
) ∣∣ ri

j+1, t
−i

)]

+
m∑

j=1

ri
j+1∫

ri
j ,Lj

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)]

= 0,

that is, C has non-negative length. In order to see the equality relation, note the following: the
terms of the first summation cancel each other out. Furthermore, the second summation describes
an integral over a closed path in T i which, due to path independence, equals zero. �

Weak monotonicity of f and path independence of E−i[βi(f (ri , t−i ) | t−i )] do not imply
one another. That weak monotonicity does not imply path independence follows directly from
Example 1 and Theorem 2. It can also be derived directly from Example 1. If we consider for
example path A consisting of the line segment between x and y and path Ã consisting of the line
segment between x and z and the line segment between z and y, we find that

y∫
x,A

β
(
f (r)

) = −3

2
and

y∫
˜

β
(
f (r)

) = 3.
x,A
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Fig. 3. The allocation function in Example 2.

So the path integral of β(f (r)) from x to y is not independent of the path of integration. That
weak monotonicity of f does not imply path independence of E−i[βi(f (ri , t−i ) | t−i )] de-
pends crucially upon the assumption of multi-dimensional type spaces. If we would consider
one-dimensional type spaces instead, then weak monotonicity would indeed imply path indepen-
dence.

That path independence does not imply weak monotonicity is illustrated by the following
example.

Example 2. Let us consider the allocation of a single, indivisible object. For simplicity we as-
sume that there exists only a single agent to possibly allocate to. He has a type t ∈ T = [0,1]
which reflects the value of the object for him. Given a report r of the agent, the allocation rule
f :T �→ [0,1] assigns to him a probability for getting the object. The agent’s valuation for the re-
sulting allocation is v(f (r) | t) = f (r)t . Specifically, we set f (r) = −(2r − 1)2 + 1 (see Fig. 3).
Clearly, f is path independent but not weakly monotone.

If f is Bayes–Nash incentive compatible, the corresponding payments can be constructed by
using shortest path lengths (as described in the proof of Theorem 1). For each i ∈ N , let us pick
some ai as the source node in T i

f . Thus, if agent i reports t i , he has to make a payment

Pi

(
t i

) = inf
m∑

j=1

li
(
ri
j , r

i
j+1

)
, (12)

where the infimum is taken over all finite paths from t i to ai . Take any finite path A = (ri
1 =

t i , . . . , ri
m+1 = ai) in T i

f . Let Lj denote the line segment between ri
j and ri

j+1, whereas Lt

denotes the line segment between the source and t i . Following the repeated substitution approach
presented in the second part of the proof of Theorem 2, we can construct paths that are shorter
(or as long) by letting them visit the same nodes as A and also additional nodes along the line
segments in between. In the limit, as the number of nodes goes to infinity, the distance between
neighboring nodes goes to zero and the length of the paths goes to

m∑
j=1

(
E−i

[
vi

(
f

(
ri
j , t

−i
) ∣∣ ri

j , t
−i

) − vi
(
f i

(
ri
j+1, t

−i
) ∣∣ ri

j+1, t
−i

)]

+
ri
j+1∫

ri ,Lj

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)])

. (13)
j
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Using path independence in (13) we have that6

m∑
j=1

ri
j+1∫

ri
j ,Lj

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)] =

ai∫
t i ,Lt

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)]

.

Applying the above to (12) yields

Pi

(
t i

) = E−i

[
vi

(
f

(
t i , t−i

) ∣∣ t i , t−i
) − vi

(
f i

(
ai, t−i

) ∣∣ ai, t−i
)]

−
t i∫

ai ,Lt

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)]

, (14)

implying that the expected utility (see (1) for definition) for truthfully reporting t i is7

Ui
(
t i

∣∣ t i
) = Ui

(
ai

∣∣ ai
) +

t i∫
ai ,Lt

E−i

[
βi

(
f

(
ri , t−i

) ∣∣ t−i
)]

. (15)

Acknowledgments

The authors are grateful to the participants of the Second World Congress of the Game Theory
Society (2004) and the First Spain Italy Netherlands Meeting on Game Theory (2005) for helpful
discussions. We especially thank Philip J. Reny, Rakesh V. Vohra and an anonymous associate
editor of Games and Economic Behavior for their useful comments.

References

Ahuja, R.K., Magnanti, T.L., Orlin, J.B., 1993. Network Flows—Theory, Algorithms and Applications. Prentice-Hall,
New Jersey.

Bikhchandani, S., Chatterji, S., Lavi, R., Mu’alem, A., Nisan, N., Sen, A., 2006. Weak monotonicity characterizes deter-
ministic dominant-strategy implementation. Econometrica 74, 1109–1132.

Gui, H., Müller, R., Vohra, R.V., 2004. Dominant strategy mechanisms with multidimensional types. METEOR Research
Memorandum 04/046.

Jehiel, P., Moldovanu, B., 2001. Efficient design with interdependent valuations. Econometrica 69, 1237–1259.
Jehiel, P., Moldovanu, B., Stacchetti, E., 1999. Multidimensional mechanism design for auctions with externalities.

J. Econ. Theory 85, 258–293.
Klemperer, P., 1999. Auction theory: A guide to the literature. J. Econ. Surveys 13, 227–286.
Krishna, V., Maenner, E., 2001. Convex potentials with an application to mechanism design. Econometrica 69, 1113–

1119.
Müller, R., Perea, A., Wolf, S., 2005. Weak monotonicity and Bayes–Nash incentive compatibility. METEOR Research

Memorandum 05/040.
Roberts, K., 1979. The characterization of implementable choice rules. In: Laffont, J.-J. (Ed.), Aggregation and Revela-

tion of Preferences. North-Holland, Amsterdam, pp. 321–348.

6 The line segment Lt for the path of integration is picked for convenience. Due to path independence, it can be
replaced with any other path connecting the source and t i.

7 In order to derive (15) one can use that by construction Pi(a
i ) = 0 and thus add this term to the right-hand side

of (14).



358 R. Müller et al. / Games and Economic Behavior 61 (2007) 344–358
Rochet, J.-C., 1987. A necessary and sufficient condition for rationalizability in a quasi-linear context. J. Math. Econ. 16,
191–200.

Rockafellar, R.T., 1966. Characterization of the subdifferentials of convex functions. Pacific J. Math. 17, 487–510.
Rockafellar, R.T., 1970. Convex Analysis. Princeton Univ. Press, Princeton.
Saks, M., Yu, L., 2005. Weak monotonicity suffices for truthfulness on convex domains. In: Proceedings of the 6th ACM

Conference on Electronic Commerce (EC05). ACM Press, New York, pp. 286–293.
Shostak, P., 1981. Deciding linear inequalities by computing loop residues. J. ACM 28, 769–779.


